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Assessment of UAS Detect-and-Avoid Robustness Under Sensor
Degradation, Erroneous Inputs, and Interference Scenarios
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Abstract: Uncrewed aircraft systems require reliable detect-and-avoid functionality to support operations
in airspace shared with crewed aircraft, other uncrewed vehicles, and complex environmental clutter.
Contemporary detect-and-avoid systems integrate multiple sensing modalities, onboard navigation, and
decision logic to ensure separation standards and mitigate collision risks across a wide range of encounter
geometries. However, the operational envelope of these systems is shaped by non-ideal conditions, including
gradual sensor degradation, transient faults, corrupt or inconsistent surveillance inputs, and intentional or
unintentional interference in sensing and communications channels. Understanding how such conditions
propagate through tracking, conflict detection, and maneuver selection is important for evaluating safety
margins and for informing system design choices. This paper develops a structured assessment of detect-and-
avoid robustness under these conditions, focusing on the interaction between sensing imperfections, estimator
performance, conflict prediction uncertainty, and guidance decisions. The analysis considers heterogeneous
sensor architectures, probabilistic models of degradation and faults, and interference mechanisms that perturb
either measurement streams or the logical integrity of detect-and-avoid functions. Emphasis is placed on
characterizing conditions under which detect-and-avoid performance degrades gradually, conditions under
which it collapses abruptly, and the sensitivity of critical safety metrics to modeling assumptions. The resulting
formulations and illustrative evaluations provide a basis for comparing detect-and-avoid configurations under
stress, identifying parameter regimes of concern, and informing verification activities that incorporate adverse
but plausible sensing and interference scenarios.
Copyright © Morphpublishing Ltd.

1. Introduction

Detect-and-avoid functionality is widely recognized as a key enabler for integrating uncrewed aircraft systems
into shared airspace at scale [1]. A detect-and-avoid (DAA) system typically fuses measurements from cooperative
surveillance channels, such as transponder-based or broadcast-based systems, with non-cooperative sensors including
radar, electro-optical, or infrared payloads, and onboard navigation information. It then applies tracking algorithms,
conflict detection logic, and resolution or guidance modules to maintain sufficient separation from other traffic and
to avoid loss-of-separation or collision events. While baseline performance in nominal conditions is often studied
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through Monte Carlo encounter models and standardized scenarios, operational deployments must withstand
deviations from ideal sensing performance, transient anomalies, and intentional disruption. These effects can
significantly alter the reliability of conflict detection and maneuver advisories even when nominal performance
appears acceptable.

In practical environments, sensor degradation may arise from hardware aging, calibration drift, partial obstruction
of fields-of-view, thermal or vibration-induced instability, or reduced signal-to-noise ratios in cluttered or low-visibility
conditions [2]. Erroneous inputs can be introduced through software faults, navigation errors, incorrect ownship state
estimates, inconsistent tracks between fused sources, or malformed cooperative messages. Interference mechanisms
include unintentional radio frequency congestion, co-channel emissions, reflections, as well as deliberate jamming
and spoofing targeting surveillance or navigation channels. Each of these classes of phenomena can perturb the
internal belief state maintained by the DAA logic and can lead to either overly conservative alerts, which may
burden operations, or under-responsive behavior, which directly impacts safety margins.

The robustness of DAA systems under this spectrum of off-nominal conditions is not fully characterized by
standard accuracy or false-alarm metrics. Instead, robustness depends on how uncertainties propagate across a
multi-layered architecture from sensing to estimation to conflict prediction to guidance and mode management.
Subtle interactions may arise, such as bias in range-rate estimation amplifying conflict-time prediction error, or
desynchronization between cooperative and non-cooperative tracks leading to inconsistent traffic representations
[3]. Furthermore, mitigation strategies such as track quality flags, integrity monitors, and redundancy management
introduce additional logic that can behave in complex ways under combined degradations.

This paper considers DAA robustness from a system-level modeling perspective, representing the detection
and avoidance process as a closed-loop mapping from true environment states, through imperfect sensing and
computation, to maneuver actions and induced future states. Within this representation, sensor degradation,
erroneous inputs, and interference scenarios are introduced as parametric and stochastic perturbations to the
sensing and decision elements. Robustness is then discussed in terms of induced distributions over safety-related
metrics, rather than point performance in nominal conditions. The aim is not to prescribe specific implementations,
but to provide a technical structure in which alternative architectures and parameterizations can be comparatively
assessed.

The analysis is organized as follows [4]. A background description of DAA architectures is provided to establish
notation and clarify the flow of information and decisions. Sensor degradation mechanisms are formulated in
probabilistic and hybrid-system terms to capture both gradual and abrupt changes. Erroneous inputs are modeled
as structured and unstructured faults entering the measurement and track domains. Interference and adversarial
scenarios are framed as exogenous processes or strategic agents that perturb observation channels or logic. These
elements are then combined into an integrated robustness assessment framework based on stochastic reachability
and risk functionals. Finally, a set of simulation-style evaluations is described to illustrate how such a framework can
be used to explore parameter sensitivities and scenario coverage [5]. The paper concludes with a concise summary
of observations and implications for assessment practices.

2. Formal System Modeling and Robustness Objectives

The assessment of detect-and-avoid robustness under sensor degradation, erroneous inputs, and interference
requires a formal representation of the coupled environment, sensing, estimation, and decision-making processes.
This section introduces a modeling framework that captures this coupling with sufficient structure to support
quantitative analysis, while remaining abstracted from any specific proprietary implementation. The focus is on the
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Table 1. Key elements of the closed-loop DAA model

Component Role Representation Domain
Environment state True traffic and own-

ship
Joint kinematic and
dynamic variables

Physical

Observations Sensed information
streams

Channel-specific map-
pings with noise

Measurement

Belief state Internal situation esti-
mate

Filtered tracks, covari-
ances, flags

Information

DAA output Alerts and commands Discrete alerts, maneu-
ver cues

Decision

Table 2. Representative sensor degradation mechanisms

Mechanism Effect on
measurements

Modeling construct Timescale

Calibration drift Slowly biased ranges or
angles

Latent parameter evo-
lution

Long

Alignment error Misaligned bearings or
elevation

Mode-dependent map-
ping

Long

Noise growth Reduced precision, dis-
persion

Inflated covariance,
heavy tails

Medium

Dropouts Intermittent loss of
returns

Time-varying detection
probability

Short

Table 3. Classes of erroneous and inconsistent inputs

Source Manifestation Abstract model Impact
Cooperative reports Incorrect position or

velocity
Mixture of nominal and
faulty samples

Bias risk

Navigation faults Ownship state error Structured state offset
in fusion

Geometry
shift

Time-stamp issues Misordered data Desynchronization in
tracks

Alert timing

Association errors Track swaps or merges Discrete mode in logic
states

False or
missed alerts

closed-loop mapping from true encounter dynamics to detect-and-avoid outputs under non-ideal sensing conditions
and logic behaviors, providing a basis on which degradation and interference mechanisms can be parameterized and
robustness objectives can be defined. By making explicit the dependencies between physical states, observation
channels, internal belief states, and decision rules, the formulation allows robustness questions to be framed in
terms of measurable or computable functionals, rather than exclusively in terms of qualitative scenarios.

Consider a discrete-time horizon indexed by k , with step size chosen to capture the fastest relevant DAA update,
including both sensing and alerting cycles [6]. Let the joint true state of the ownship and all relevant intruders be
denoted by xk , including positions, velocities, and any additional variables that influence observability or maneuvering
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Table 4. Interference and adversarial scenario categories

Type Primary target Representation Scope
Unintentional RF
congestion

Cooperative links Increased loss, variable
noise

Local or
regional

Jamming Surveillance or GNSS Bounded interference
process

Directed

Spoofing State reporting Structured false mea-
surements

Strategic

Multipath and clut-
ter

Non-cooperative sens-
ing

Distorted returns, false
tracks

Environment

Table 5. Main robustness modeling constructs

Construct Purpose Examples
Perturbation vector Encodes degradation

and faults
Bias levels, dropout
rates, interference
bounds

Belief update opera-
tor

Propagates internal
state

Filters, integrity moni-
tors, track logic

Closed-loop trajec-
tory

Links inputs to out-
comes

State, alerts, maneu-
vers over time

Table 6. Safety and robustness evaluation metrics

Metric Interpretation Use in assessment
Minimum
separation

Closest approach dis-
tance

Detect erosion of safety
margins

Loss-of-separation
probability

Frequency of threshold
violation

Quantify impact of per-
turbations

Alert lead time dis-
tribution

Time before predicted
conflict

Assess timeliness under
stress

Advisory stability Consistency of outputs Reveal oscillations and
mode issues

behavior. The evolution of xk is represented generically by a stochastic dynamical system driven by both ownship
commands and exogenous uncertainties. A minimal but expressive form assumes that

xk+1 = f (xk , uk , dk),

where uk is the ownship command issued as a consequence of DAA and other guidance functions, and dk captures
exogenous influences such as intruder maneuvers or wind realizations. The function f may encode high-fidelity
aircraft dynamics or simplified kinematic models; robustness conclusions depend on its fidelity only through how
accurately relative motion and reachable sets are represented in critical regions of the state space. [7]

Sensing enters through a set of observation channels indexed by j , each associated with a sensing or data source
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Table 7. Simulation-based assessment elements

Element Role Illustration
Encounter set Defines traffic geome-

tries
Head-on, crossing,
overtaking cases

Degradation profiles Realize sensor aging
and faults

Drifts, step changes,
outages

Interference
patterns

Stress communication
and sensing

Pulsed jamming, partial
spoofing

Response models Map alerts to maneu-
vers

Automated or super-
vised execution

such as cooperative surveillance, primary radar, electro-optical tracking, inertial navigation, barometric or satellite-
based altitude, and crosslink data. For each channel, define an observation function and error term so that the
nominal measurement at time k is written as

z
(j)
k = h

(j)(xk) + v
(j)
k ,

with v
(j)
k representing channel-specific noise and imperfections under nominal assumptions. The collection of

measurements available to the DAA logic at time k is denoted zk = {z (j)k }, recognizing that some channels
may be asynchronous or intermittent. Sensor degradation, erroneous inputs, and interference will be modeled
as perturbations of the h(j) mappings, of the distributions of v (j)k , and of the composition of zk actually delivered
to the system.

The DAA system maintains an internal belief state bk summarizing its information about xk and potentially
about sensor health and logic modes. This belief state includes, in general, state estimates, covariances, track
lists, integrity flags, and the history of alerts and maneuvers. One may view bk as a sufficient statistic used by the
DAA decision rule. The update of bk is induced by an estimation and monitoring operator E that processes new
measurements and previous beliefs [8]. In abstract form,

bk+1 = E(bk , z
∗
k+1, ψk),

where z∗k+1 denotes the actual inputs presented to the estimator, possibly corrupted or incomplete, and ψk denotes
configuration or mode variables representing internal logic states such as filter modes, alert levels, or sensor selection
statuses. The operator E subsumes prediction, filtering, data association, integrity checks, and track management.
Robustness analysis hinges on how E amplifies or attenuates deviations arising from degraded or erroneous z∗k+1,
including heavy-tailed or biased perturbations that may not match tuning assumptions.

On top of bk , the DAA alerting and guidance functions implement a decision mapping G that selects advisories or
direct control actions based on the inferred traffic situation and system modes. Denote by yk the conflict-relevant
output of DAA at time k , such as no alert, traffic alert, resolution advisory, or a continuous maneuver command.
Then

yk = G(bk , ψk),

and the ownship command uk entering the state dynamics emerges from an interaction between yk , the vehicle
control system, and any human operator or supervisory autonomy [9]. For robustness assessment that focuses on
the DAA contribution, it is convenient to model uk as the output of a policy Π that maps yk and possibly bk or
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other context into commands. This leads to

uk = Π(yk , χk),

where χk captures external constraints or mission logic that may influence whether and how DAA advisories are
executed. The composition of f , E, G, and Π defines a closed-loop system whose behavior under perturbed sensing
and logic conditions is the subject of the robustness evaluation.

Non-ideal sensing effects are represented by introducing a perturbation structure on the nominal measurement
model and processing chain [10]. Let φ be a vector of perturbation parameters and stochastic processes that encode
degradation, faults, and interference. These elements include, for example, channel-specific detection probabilities,
bias patterns, misalignment angles, noise scale factors, message dropout and corruption rates, timing offsets, and
interference intensities. Rather than fixing φ, robustness assessment considers φ ranging over a set that represents
plausible or design-basis deviations. For a given realization of φ, the actual measurement delivered to the DAA
system is denoted z∗k (φ), representing the combined effect of physical sensing, upstream processing, and any
adversarial manipulation, so that

z∗k (φ) = H(xk , φ, ωk),

with H encompassing both nominal functions and perturbations, and ωk denoting stochastic variability not captured
directly in φ. This compact representation allows unified treatment of gradual sensor degradation, sporadic erroneous
inputs, and structured interference patterns as different components or regimes of φ.

Within this framework, robustness concerns can be formulated in terms of how perturbations φ influence safety-
relevant outcomes derived from the closed-loop trajectories [11]. Let S denote a functional of the trajectory
{xk , bk , yk , uk}, such as the minimum separation distance during a given encounter, the indicator of a loss-of-
separation event, the distribution of alert lead times, or an integrated cost that penalizes both missed conflicts
and unnecessary maneuvers. Then S becomes a random quantity driven by initial encounter conditions, stochastic
uncertainties, and perturbations φ. The mapping

φ 7→ L(S | φ)

describes how the law of S depends on perturbation realizations. Robustness assessment is then interpreted as the
problem of characterizing this dependence over a region of φ that encodes the classes and intensities of degradation,
erroneous inputs, and interference considered operationally relevant or of design interest.

A central object in this analysis is the set of trajectories that lead to safety-critical outcomes. Define a critical set
Xcrit in the joint state space encapsulating, for instance, pairwise separation below a defined threshold or violation
of regulatory minima. One may then define an event A(φ) that the closed-loop trajectory enters Xcrit within a
specified horizon when subject to perturbations characterized by φ. Formally, for a given encoding of encounter
distributions and stochastic inputs, the robustness measure of interest is often the probability [12]

r(φ) = P
(
A(φ)

)
,

together with related statistics such as conditional distributions of impact geometry or alerting behavior when A(φ)
occurs. The function r(φ) links perturbation models to quantitative safety metrics and is the object to be bounded,
approximated, or compared across DAA configurations.

For sensor degradation, components of φ may represent latent states that evolve over time, inducing temporal
correlation in measurement distortions. The DAA estimator E may or may not explicitly track these latent states.
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When they are not tracked, residual biases and mis-specified covariance structures can shift the effective belief
state bk away from the true state xk in systematic ways [13]. In coarsened terms, one can think of the estimation
error ek = x̂k − xk as being driven not only by zero-mean noise but also by slowly varying or mode-dependent
biases governed by φ. These biases may remain within the apparent uncertainty bounds of the estimator, leading to
undetected erosion of conflict prediction accuracy. Robustness modeling explicitly accommodates this by including
in φ processes that induce such structured deviations.

Erroneous inputs and intermittent faults are represented through perturbations in H that yield z∗k (φ) inconsistent
with nominal statistics, even if individual anomalies are bounded in magnitude. For example, φ may specify a fault
rate and an error distribution for cooperative reports, as well as the logic by which faulty and nominal measurements
are intermixed. The propagation of such errors through E depends on filter design, gating thresholds, and track
management rules. In this way, the same fault model can induce different robustness characteristics in different
DAA designs, and the framework captures these differences at the level of induced distributions of S rather than
only at the measurement layer.

Interference and adversarial manipulation are naturally expressed within this parameterization by allowing parts
of φ to be selected according to strategic or worst-case criteria rather than purely stochastic ones [14]. In a
conservative analysis, one defines an admissible set Φadm corresponding to bounded interference capabilities or to
constraints derived from spectrum regulations and physical limitations. Robustness questions are then expressed in
terms of worst-case functionals, such as the supremum of r(φ) over φ ∈ Φadm, or in terms of identifying subsets
of Φadm for which r(φ) exceeds specified thresholds. This formulation admits both game-theoretic interpretations,
where an adversary selects perturbations to maximize risk, and engineering interpretations, where Φadm encodes
expected ranges of interference intensities and spatial coverage.

Within this formal setting, robustness objectives can be organized without relying on enumerated scenario lists.
One objective is stability of safety performance, in the sense that small or moderate perturbations in φ lead
to limited changes in the distribution of S. Another objective is resilience to discrete mode changes, wherein
the system transitions between sensing and logic configurations without producing abrupt increases in r(φ) or
pathological alerting patterns. A further objective is discriminability, meaning that internal integrity and monitor
functions should, with high probability, distinguish between nominal and significantly perturbed regimes in φ in time
to adapt sensing weights or trigger mitigations that constrain r(φ).

The modeling approach also supports the construction of equivalent or reduced-order representations that are
more tractable for analysis while still reflecting key sensitivities. For instance, complex sensor and fusion behaviors
can, in specific contexts, be abstracted into stochastic error models on relative state estimates and integrity flags,
characterized by conditional distributions parameterized by φ [15]. Similarly, detailed pilot or autonomy response
models encoded in Π can be abstracted into distributions of achieved avoidance maneuvers as functions of alerts
and geometries. The validity of such abstractions is scenario-dependent, but once accepted, they allow robustness
metrics like r(φ) to be estimated or bounded using fewer dimensions, facilitating parameter sweeps and rare-event
analyses.

Finally, this formal system representation clarifies how robustness assessments should be interpreted. Because
r(φ) and related measures are defined relative to explicit models for encounters, perturbations, and decision
mappings, conclusions drawn from any given set of simulations or analyses are conditional on those modeling
choices. The objective is not to eliminate this conditionality, but to expose it. By viewing sensor degradation,
erroneous inputs, and interference as structured components of φ that feed through a well-defined closed-loop
mapping from states to safety outcomes, the assessment of detect-and-avoid robustness can focus on transparent
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relationships between assumptions and results, enabling more consistent comparison of different architectures and
parameterizations under a shared analytical language. [16]

3. Background on Detect-and-Avoid Architectures

A DAA system can be viewed as an information-processing and control stack that transforms physical encounter
conditions into advisories or automated maneuvers. Let the joint state of ownship and surrounding traffic at discrete
time index k be denoted by xk , including positions, velocities, and other relevant variables in a suitable coordinate
frame. The underlying dynamics are represented generically as

xk+1 = f (xk , uk) + wk

where uk is the ownship control input selected by guidance or by the remote or onboard pilot, and wk represents
exogenous disturbances such as wind or unmodeled maneuvers by other aircraft. The function f may encapsulate
six-degree-of-freedom dynamics or reduced-order kinematics, depending on fidelity requirements.

Sensing subsystems provide measurements zk influenced by the true state xk and sensing imperfections [17]. For
cooperative surveillance, measurements often approximate relative positions and velocities derived from broadcast
states. For non-cooperative sensing such as radar or electro-optical systems, measurements are typically in range,
bearing, and elevation or pixel-space coordinates. A generic measurement model can be written as

zk = h(xk) + vk

with vk capturing noise and distortions. In practical DAA implementations, multiple heterogeneous sensors produce
asynchronously sampled measurements that are fused into a consolidated traffic picture [18]. Data association,
track initiation and maintenance, and outlier rejection are critical components that shape the effective information
delivered to conflict detection logic.

Conflict detection modules evaluate whether the inferred trajectories of ownship and intruders may violate
separation criteria within a lookahead horizon. These criteria might be based on horizontal and vertical distance
thresholds or other definitions of protected volumes. Conflict detection can rely on deterministic projections using
current estimates or on stochastic predictions that account for process and estimation uncertainty. Resolution
modules then compute advisories or trajectories uk that reduce predicted conflict probabilities while respecting
flight envelope, mission, and airspace constraints [19]. Some architectures implement advisories only, leaving final
decisions to a remote pilot, while others implement partial or full automation in executing avoidance maneuvers.

Robustness emerges from the coupling of all these elements. Estimator performance depends on sensor health
and interference. Conflict prediction quality depends on estimator outputs, ownship performance models, and
assumptions about intruder behavior. Guidance decisions depend on conflict predictions and on supervisory logic
that may inhibit or modify advisories in specific contexts. Traditional performance metrics, such as probability of
detection or false-alarm rate for conflicts under nominal noise conditions, do not fully describe behavior when
sensors degrade or inputs become inconsistent [20]. Instead, it becomes important to understand the sensitivity
of conflict detection and guidance to variations in noise distributions, biases, missed detections, false tracks, and
message manipulations that can arise in realistic environments.

4. Modeling Sensor Degradation in Detect-and-Avoid Pipelines

Sensor degradation is modeled here as a combination of parametric drift, stochastic dispersion, and mode transitions
affecting the observation process. Let θk denote a vector of latent degradation parameters at time k . The
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measurement model can be extended as
zk = h(xk , θk) + vk ,

with vk representing residual noise after accounting for θk [21]. The parameter θk may capture range bias, scale
errors, misalignment angles, reduced detection probability, and other relevant factors. Gradual degradation can be
represented as a stochastic process such as

θk+1 = θk + ηk ,

where ηk is a small disturbance, potentially with covariance that reflects environmental and mechanical stress.
Abrupt faults can be represented by jump processes or discrete modes. A hybrid formulation introduces a mode
variable mk that evolves as a Markov chain and switches the mapping between xk and zk .

In such a hybrid model, each mode mk corresponds to a sensor condition, such as nominal, partially degraded,
saturated, or failed [22]. For a given mode, the effective measurement function and noise statistics are determined
by (h(m), R(m)), with R(m) denoting the covariance of vk under mode m. The transition probabilities between
modes define likely sequences of degradation events, including rare catastrophic failures and more probable mild
degradations. The DAA estimator may or may not explicitly infer mk ; many practical implementations operate with
filters tuned to nominal or slightly conservative assumptions, which can lead to mis-calibrated uncertainty under
significant degradation.

From a robustness assessment perspective, one is interested in how deviations in θk and mk influence the
belief over relative states used for conflict detection. If x̂k denotes the filter estimate and Pk its error covariance,
then degradation typically increases Pk , but may also introduce structured bias. For instance, a small bias in
bearing measurements can systematically distort lateral position estimates over time. Even if Pk appears acceptable
according to internal consistency checks, biased estimates can shift predicted closest point of approach and alter
whether a potential conflict is detected. Modeling must therefore consider both dispersion and bias, not only
variance inflation. [23]

Advanced formulations can represent the estimation problem under degradation as a partially observable system in
which both xk and θk (and possibly mk) are unknown. Estimators may attempt joint state and parameter estimation
using Bayesian or adaptive techniques, but DAA certification constraints often limit algorithmic complexity. For
robustness analysis, one may instead specify families of admissible degradation trajectories and analyze worst-case
or distributionally robust behavior. For example, one can constrain θk to lie in a compact set capturing plausible
miscalibrations and then study whether the DAA logic maintains conflict detection performance over that set.
Alternatively, one can treat θk as a random process with specified statistics and evaluate the resulting probability
of missed or late conflict detection.

By structuring degradation in this way, assessment can move beyond scalar performance margins to examine
which combinations of degradation modes, encounter geometries, and traffic behaviors most significantly influence
safety metrics [24]. This enables a more systematic exploration of robustness than ad hoc stress tests that adjust
sensor parameters independently or uniformly.

5. Robustness to Erroneous and Inconsistent Inputs

Erroneous inputs to DAA systems may arise from misreported cooperative surveillance data, navigation faults,
corrupted time stamps, misassociated tracks, or software errors in upstream processing. Unlike gradual degradation,
such errors can be intermittent, structured, and partially correlated with operational conditions. To model their
influence, consider the measurement sequence as a mixture of nominal and faulty components. Let z∗k denote the

Morphpublishing , 1–17 9 Copyright © Morphpublishing Ltd.
Published inCURRENT ISSUE



Morphpublishing

value provided to the DAA estimator at time k [25]. A simple probabilistic abstraction can be

z∗k =

{
zk , with probability 1− ϵk ,
z̃k , with probability ϵk ,

where zk follows the nominal sensing model and z̃k represents an erroneous input that may depend on xk , past
values, or adversarial choices. The parameter ϵk may vary in time and across channels. This abstraction supports
analysis of both random and scenario-driven error patterns.

When multiple sensors or feeds are fused, consistency checks and cross-validation can mitigate isolated erroneous
inputs, but may be less effective when faults align across channels or when consistency metrics are themselves
affected by timing or synchronization issues. Let x̂k be obtained from a filter that assumes Gaussian noise and no
gross errors. Under the mixture model, the effective error distribution becomes heavy-tailed [26]. Robust estimation
theory indicates that such mismatches can lead to significant degradation in estimation accuracy and integrity. A
robust DAA assessment must therefore characterize the distribution of estimation errors under mixtures, not only
under Gaussian assumptions.

One representation of robustness is through influence functions that describe how sensitive x̂k is to perturbations
in individual measurements. Filters with bounded influence or mechanisms that down-weight outliers reduce
sensitivity to isolated erroneous inputs. However, in DAA, delays or suppression of valid but unusual measurements
can also affect timely conflict detection. This introduces a trade-off between false alarm rejection and sensitivity to
genuine, low-probability conflict geometries. A comprehensive assessment therefore examines parameter regimes
for which the chosen robustness mechanisms maintain an acceptable balance, when exposed to realistic encounter
and fault statistics. [27]

A more structural modeling approach treats erroneous inputs as bounded or stochastic disturbances entering an
augmented dynamical system that includes estimator states and conflict logic states. Define an augmented state
ξk that concatenates x̂k , internal filter variables, and logic indicators such as track quality and alert states. The
augmented evolution can be expressed as

ξk+1 = F (ξk , z
∗
k ),

with F representing the combined estimation and logic update. Robustness questions can then be framed in terms
of reachable sets of ξk under specified bounds or distributions of z∗k − zk . For example, one can ask whether there
exist error realizations within specified bounds that drive the system into regions corresponding to missed alerts,
spurious alerts, or oscillatory advisories.

This formulation supports both worst-case (adversarial disturbance) and probabilistic (stochastic disturbance)
analyses [28]. In the former, one examines whether any pattern of erroneous inputs consistent with assumed
bounds can cause unacceptable behavior. In the latter, one characterizes probabilities of undesirable outcomes given
distributions over erroneous input events. Both viewpoints are relevant for DAA robustness assessment: worst-case
analyses address safety margins with conservative modeling, while probabilistic analyses align with risk-informed
decision making when complete elimination of errors is infeasible.

6. Interference and Adversarial Scenarios

Interference scenarios extend beyond random errors by introducing structured disruptions of sensing and
communication mechanisms. These include unintentional electromagnetic interference, spectrum congestion,
multipath-induced distortions, as well as deliberate jamming and spoofing attacks targeting surveillance links,
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navigation signals, or intra-system communications. Such phenomena can simultaneously affect multiple aircraft
and systems, introducing correlated uncertainties difficult to address through simple redundancy. [29]

At the measurement level, interference can be represented as an additive or multiplicative disturbance injected
into the observation process. For a cooperative channel, one may write

zc
k = h

c(xk) + ik ,

where ik summarizes the net effect of interference. In jamming scenarios, the effective signal-to-interference ratio
degrades, which can be abstracted by increased variance or dropout probability of zc

k . In spoofing scenarios, ik may
be structured to shift apparent positions or velocities in specific directions. For non-cooperative sensors, interference
may produce false returns or obscure genuine targets, altering detection probabilities and clutter characteristics.

When interference is strategic, it is useful to model the interaction between the DAA system and the interfering
agent as a dynamic game [30]. Let the DAA system choose estimation and decision policies π, and the adversary
choose interference actions ak . The observation model and subsequent DAA behavior become functions of ak , and
one can define performance or safety loss functions capturing, for instance, probabilities of undetected conflicts. A
conservative robustness analysis may consider worst-case interference over an admissible set of ak , leading to min-
max formulations. For example, one can analyze whether for all interference sequences with bounded magnitude
and rate, the DAA maintains detection of conflicts that would be detected without interference.

An alternative, complementary viewpoint considers interference processes as stochastic with specified temporal
and spatial characteristics [31]. Here, interference events are modeled through random fields or point processes in
time-frequency space, influencing different channels with given probabilities. The DAA architecture can incorporate
integrity monitoring, such as cross-checks between sensors or sanity checks on kinematic feasibility of reported
tracks. Robustness assessment then examines how these monitors respond to interference realizations and whether
they effectively trigger mode changes, reweight sensors, or inhibit reliance on suspect inputs in time to preserve
safety margins.

A particular concern arises when interference partially degrades situation awareness without being detected by
integrity monitors. In such latent failure modes, conflict detection continues based on corrupted or incomplete
data, and standard fault flags do not indicate abnormality. Robustness analysis in this regime focuses on
identifying conditions under which interference patterns can evade existing monitors while inducing significant
changes in conflict prediction [32]. This motivates systematic exploration of parameterized interference models,
including spatially localized jamming, simultaneous partial outages in cooperative and non-cooperative channels, and
coordinated spoofing that preserves superficial consistency between channels while distorting absolute geometry.

7. Integrated Robustness Assessment Framework

To systematically evaluate DAA robustness under sensor degradation, erroneous inputs, and interference, it is
useful to frame the problem as a stochastic reachability and risk assessment task. Consider the closed-loop system
defined by environment dynamics, sensing, DAA logic, and resulting ownship actions. Let S denote a safety-relevant
quantity, such as minimum separation distance achieved in an encounter, or an indicator of loss-of-separation. For
a given configuration of degradation and interference parameters, described collectively by φ, and for a given
encounter scenario distribution, one can regard S as a random variable S(φ) induced by all stochastic elements
[33].
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A basic robustness measure is the probability that S violates a safety threshold [34]. Denoting by A the event
of violation, one may evaluate

r(φ) = P (A | φ).

This function captures how safety performance changes with specific degradation or interference conditions. For
assessment, one often considers sets of parameters Φ representing plausible or design-basis conditions and seeks
either upper bounds on r(φ) over φ ∈ Φ or characterizations of parameter regions where r(φ) remains below
acceptable levels.

A refined perspective describes robustness not only through scalar probabilities but also through risk functionals
that weight severity. For example, one may define an expectation of a loss function L(S) that increases with severity
of separation violations [35]. Alternatively, one may impose chance constraints, requiring that the probability of
crossing critical thresholds remains below specified levels under all φ in a set. These formulations align with both
deterministic safety margins and probabilistic safety targets and provide a bridge between modeling and assurance
arguments.

Computing such measures directly may be challenging due to dimensionality and nonlinearity of the closed-
loop system. However, the structure of the DAA pipeline and the relatively low dimension of key relative states
enable focused techniques. Scenario-based methods approximate r(φ) via ensembles of encounters and randomized
realizations of degradation and interference processes. Importance sampling and rare-event simulation methods can
be used to estimate low probabilities associated with severe outcomes [36]. Analytical bounds can be constructed
using concentration inequalities and Lipschitz-type properties of the mapping from uncertainties to S for certain
components, although care is required due to discrete logic and mode switching.

The integrated framework also facilitates comparison of architecture variants. For instance, one may analyze
configurations with different sensor fusion algorithms, integrity monitors, or guidance logics, each represented by a
different mapping from observations to actions but evaluated under the same ensemble of perturbations. Relative
robustness is then expressed by differences in r(φ) or in risk functionals across configurations over the parameter
sets of interest. Such comparative analysis avoids overemphasis on nominal performance and focuses on stability
of safety metrics under challenging but relevant conditions.

Finally, the framework supports sensitivity analysis [37]. By differentiating or perturbing r(φ) with respect to
components of φ, one can identify which forms of degradation or interference have the largest influence on
robustness. This information can guide design priorities, such as strengthening specific integrity checks, adding
redundancy in selected channels, or adjusting conflict detection thresholds for resilience to particular uncertainties.

8. Simulation-Based Evaluation and Discussion

While the integrated framework is defined abstractly, practical assessment relies on constructing simulation
campaigns that instantiate representative encounter models, sensor behaviors, and interference patterns. A typical
evaluation process samples initial conditions for ownship and intruder trajectories, including relative positions,
velocities, and maneuver intentions, from distributions reflecting anticipated operations. The environment model
includes wind, turbulence, and other disturbances [38]. The DAA logic is implemented with fidelity consistent with
available specifications, including estimator design, conflict detection algorithms, maneuver generation, and mode
management policies.

Sensor degradation is injected according to the models described earlier, with parameters drawn from specified
distributions or selected as fixed stress-test values. For instance, one may include slowly drifting alignment errors,
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periods of reduced detection probability, and abrupt but recoverable failures. Erroneous inputs are introduced
as intermittent corrupted messages, misassociated measurements, or inconsistent timestamps, with rates and
magnitudes aligned with engineering judgment or collected data. Interference scenarios are modeled as time-
varying processes affecting specific channels, including partial outages, noise bursts, and structured spoofing of
some cooperative reports.

For each realization of these elements, the closed-loop simulation produces time histories of estimated states,
conflict alerts, avoidance maneuvers, and actual separations [39]. Derived metrics such as minimum separation,
alert lead time, and maneuver aggressiveness are recorded. Repeating this process generates empirical distributions
from which probabilities of safety threshold violations and other robustness measures can be estimated. To focus
on regions of interest, sampling can be biased toward encounter geometries that are more sensitive to uncertainties,
such as head-on or crossing trajectories with small time-to-go, or toward degradation patterns that are likely to
stress specific aspects of the DAA logic.

Interpretation of such results benefits from disaggregating contributions from different perturbation mechanisms.
For example, one may examine how much of the change in violation probability between nominal and stressed
conditions is attributable to increased estimator dispersion versus systematic bias, or how interference in cooperative
channels interacts with the presence or absence of non-cooperative sensors. Identifying joint effects is particularly
important because some robustness features, such as track quality flags or cross-sensor consistency checks, are
designed under assumptions that may not hold when multiple degradation mechanisms occur simultaneously. [40]

An additional aspect concerns the temporal characteristics of robustness. Certain DAA architectures may tolerate
brief sensor outages but become vulnerable under longer persistent degradations. Others may be sensitive to rapid
alternation between nominal and degraded modes, which can complicate track management and cause spurious
alert oscillations. Assessing robustness under realistic temporal patterns of faults and interference thus requires
constructing sequences that capture both duration and timing relative to critical phases in encounters. This temporal
dimension is essential for understanding whether integrity monitors and fallback strategies react sufficiently early
and consistently.

Overall, simulation-based evaluation within the described framework provides a means to explore complex
dependencies that are difficult to capture analytically [41]. It can highlight parameter regimes and scenario classes
where robustness is limited, even when nominal performance indicators appear satisfactory. While numerical values
obtained from specific simulations are sensitive to modeling assumptions, the structure of the analysis encourages
explicit documentation of those assumptions and facilitates comparison of alternative DAA designs under consistent
stress scenarios.

9. Conclusion

This paper has examined detect-and-avoid robustness for uncrewed aircraft systems under conditions of sensor
degradation, erroneous inputs, and interference. By representing the DAA pipeline as a closed-loop system from
physical states through sensing and estimation to conflict detection and guidance, it becomes possible to embed non-
ideal sensing phenomena as structured perturbations and to study their impact on safety-relevant metrics. Sensor
degradation was modeled using parametric drift and mode-switching mechanisms that influence both dispersion
and bias in state estimation, highlighting the importance of considering hybrid failure modes rather than relying
solely on variance inflation. Erroneous and inconsistent inputs were formulated through mixture and disturbance
models, connecting robustness to properties of estimators, integrity monitors, and decision logic operating under
heavy-tailed and correlated uncertainties. [42]
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Interference and adversarial scenarios were incorporated as exogenous or strategic perturbations of observation
channels, emphasizing cases where partial or latent failures can challenge existing monitoring strategies. An
integrated robustness assessment framework based on stochastic reachability and risk measures was outlined to
relate these modeling constructs to probabilities and severities of safety threshold violations across parameter sets
of interest. Simulation-based evaluation within this framework was discussed as a practical means for exploring
how encounter geometries, degradation processes, and interference patterns jointly influence detect-and-avoid
performance.

The formulations presented here support a structured analysis of DAA behavior under a range of off-nominal
conditions without prescribing specific implementation details. They underscore the relevance of characterizing
both gradual and abrupt deviations from nominal sensing assumptions and of analyzing their propagation through
estimation, conflict prediction, and guidance layers. Such assessments can inform system design choices, tuning
decisions, and verification activities aimed at understanding where robustness is strong and where it is limited under
realistic operational and interference conditions, without overstating the conclusions drawn from any single model
or scenario set. [43]

References
[1] N. Chauhan, R. Kumar, S. Mukherjee, A. Hazra, and K. Giri, “Ultra-resolution unmanned aerial vehicle (uav)

and digital surface model (dsm) data-based automatic extraction of urban features using object-based image
analysis approach in gurugram, haryana,” Applied Geomatics, vol. 14, no. 4, pp. 751–764, 10 2022.

[2] J. Li-Chee-Ming and C. Armenakis, “A feasibility study on using visp’s 3d model-based tracker for uav pose
estimation in outdoor environments,” The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. XL-1/W4, pp. 329–335, 8 2015.

[3] H. Hussein, H. A. Elsayed, and S. M. A. El-Kader, “Intensive benchmarking of d2d communication over
5g cellular networks: prototype, integrated features, challenges, and main applications,” Wireless Networks,
vol. 26, no. 5, pp. 3183–3202, 9 2019.

[4] null Robert Spousta and null Steve Chan, “Hold the drones: Fostering the development of big data paradigms
through regulatory frameworks,” Journal of Communication and Computer, vol. 12, no. 3, 3 2015.

[5] L. Pádua, P. Marques, J. Hruška, T. Adão, E. Peres, R. Morais, and J. J. Sousa, “Multi-temporal vineyard
monitoring through uav-based rgb imagery,” Remote Sensing, vol. 10, no. 12, pp. 1907–, 11 2018.

[6] J. Flórez, J. Ortega, A. Betancourt, A. García, M. Bedoya, and J. S. Botero, “A review of algorithms, methods,
and techniques for detecting uavs and uas using audio, radiofrequency, and video applications,” TecnoLógicas,
vol. 23, no. 48, pp. 269–285, 5 2020.

[7] J. J. Rasmussen, J. Nielsen, J. C. Streibig, J. E. Jensen, K. S. Pedersen, and S. I. Olsen, “Pre-harvest weed
mapping of cirsium arvense in wheat and barley with off-the-shelf uavs,” Precision Agriculture, vol. 20, no. 5,
pp. 983–999, 12 2018.

[8] I. Q. García, N. V. Vélez, P. A. Martínez, J. V. Ull, and B. F. Gallo, “A quickly deployed and uas-based
logistics network for delivery of critical medical goods during healthcare system stress periods: A real use case
in valencia (spain),” Drones, vol. 5, no. 1, pp. 13–, 2 2021.

[9] M. M. Nowak, K. Dziób, and P. Bogawski, “Unmanned aerial vehicles (uavs) in environmental biology: a
review.” European Journal of Ecology, vol. 4, no. 2, pp. 56–74, 1 2019.

Copyright © Morphpublishing Ltd. 14 Morphpublishing , 1–17
Published in CURRENT ISSUE



Morphpublishing

[10] T. Schrader, J. Bredemeyer, M. Mihalachi, J. Rohde, and T. Kleine-Ostmann, “Concept and design of a
uas-based platform for measurements of rf signal-in-space,” Advances in Radio Science, vol. 14, pp. 1–9, 9
2016.

[11] L.-P. Chi, C.-H. Fu, J.-P. Chyng, Z.-Y. Zhuang, and J.-H. Huang, “A post-training study on the budgeting
criteria set and priority for male uas design,” Sustainability, vol. 11, no. 6, pp. 1798–, 3 2019.

[12] D. Connor, K. Wood, P. G. Martin, S. Goren, D. A. Megson-Smith, Y. Verbelen, I. Chyzhevskyi, S. Kirieiev,
N. Smith, T. Richardson, and T. B. Scott, “Corrigendum: Radiological mapping of post-disaster nuclear
environments using fixed-wing unmanned aerial systems: A study from chornobyl.” Frontiers in robotics and
AI, vol. 6, pp. 149–, 1 2020.

[13] P. Boucher, “Domesticating the drone: The demilitarisation of unmanned aircraft for civil markets.” Science
and engineering ethics, vol. 21, no. 6, pp. 1393–1412, 11 2014.

[14] S. Zhang, C. D. Lippitt, S. M. Bogus, and P. Neville, “Characterizing pavement surface distress conditions
with hyper-spatial resolution natural color aerial photography,” Remote Sensing, vol. 8, no. 5, pp. 392–, 5
2016.

[15] A. L. Wilber, J. M. P. Czarnecki, and J. D. McCurdy, “An argis pro workflow to extract vegetation indices
from aerial imagery of small plot turfgrass research,” Crop Science, vol. 62, no. 1, pp. 503–511, 12 2021.

[16] Y. Zhang, J. Li, W. Fu, J. Ma, and G. Wang, “A lightweight yolov7 insulator defect detection algorithm based
on dsc-se.” PloS one, vol. 18, no. 12, pp. e0 289 162–e0 289 162, 12 2023.

[17] O. Cetin and G. Yilmaz, “Real-time autonomous uav formation flight with collision and obstacle avoidance in
unknown environment,” Journal of Intelligent & Robotic Systems, vol. 84, no. 1, pp. 415–433, 1 2016.

[18] “Arctic change 2020 abstracts (continued),” Arctic Science, vol. 7, no. 1, pp. 240–368, 3 2021.

[19] A. Canolla, M. B. Jamoom, and B. Pervan, “Interactive multiple model sensor analysis for unmanned aircraft
systems (uas) detect and avoid (daa),” in 2018 IEEE/ION Position, Location and Navigation Symposium
(PLANS). IEEE, 2018, pp. 757–766.

[20] R. C. Cardoso, G. Kourtis, L. A. Dennis, C. Dixon, M. Farrell, M. Fisher, and M. Webster, “A review of
verification and validation for space autonomous systems,” Current Robotics Reports, vol. 2, no. 3, pp.
273–283, 6 2021.

[21] C. T. White, A. Petrasova, W. Reckling, and H. Mitasova, “Automated land cover change detection through
rapid uas updates of digital surface models,” The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XLII-3/W11, pp. 155–159, 2 2020.

[22] A. C. Canolla, M. B. Jamoom, and B. Pervan, “Unmanned aircraft systems detect and avoid sensor hybrid
estimation error analysis,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017,
p. 4384.

[23] M. Muthusamy, M. R. Casado, G. Salmoral, T. Irvine, and P. Leinster, “A remote sensing based integrated
approach to quantify the impact of fluvial and pluvial flooding in an urban catchment,” Remote Sensing,
vol. 11, no. 5, pp. 577–, 3 2019.

[24] C. Hoffmann, C. Weise, T. Koch, and K. Pauly, “From uas data acquisition to actionable information – how an
end-to-end solution helps oil palm plantation operators to perform a more sustainable plantation management,”
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. XLI-B1, pp. 1113–1120, 6 2016.

Morphpublishing , 1–17 15 Copyright © Morphpublishing Ltd.
Published inCURRENT ISSUE



Morphpublishing

[25] M. Herrero-Huerta, P. Rodríguez-Gonzálvez, and K. M. Rainey, “Yield prediction by machine learning from
uas-based mulit-sensor data fusion in soybean,” Plant methods, vol. 16, no. 1, pp. 1–16, 6 2020.

[26] E. Denney and G. Pai, “Tool support for assurance case development,” Automated Software Engineering,
vol. 25, no. 3, pp. 435–499, 12 2017.

[27] W. Zhang, C. Witharana, A. K. Liljedahl, and M. Kanevskiy, “Deep convolutional neural networks for automated
characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery,” Remote Sensing,
vol. 10, no. 9, pp. 1487–, 9 2018.

[28] K. Neace, R. A. Roncace, and P. Fomin, “Goal model analysis of autonomy requirements for unmanned aircraft
systems,” Requirements Engineering, vol. 23, no. 4, pp. 509–555, 7 2017.

[29] J. Gallik and L. Bolešová, “suas and their application in observing geomorphological processes,” Solid Earth,
vol. 7, no. 4, pp. 1033–1042, 7 2016.

[30] L. Pellone, S. Ameduri, N. Favaloro, and A. Concilio, “Sma-based system for environmental sensors released
from an unmanned aerial vehicle,” Aerospace, vol. 4, no. 1, pp. 4–, 1 2017.

[31] I. González-Hernández, S. Salazar, R. Lozano, and O. Ramírez-Ayala, “Real-time improvement of a trajectory-
tracking control based on super-twisting algorithm for a quadrotor aircraft,” Drones, vol. 6, no. 2, pp. 36–36,
1 2022.

[32] C. Cromwell, J. Giampaolo, J. P. Hupy, Z. Miller, and A. Chandrasekaran, “A systematic review of best
practices for uas data collection in forestry-related applications,” Forests, vol. 12, no. 7, pp. 957–, 7 2021.

[33] A. C. Canolla, M. B. Jamoom, and B. Pervan, “Interactive multiple model hazard states prediction for
unmanned aircraft systems (uas) detect and avoid (daa),” in 2018 AIAA Information Systems-AIAA Infotech@
Aerospace, 2018, p. 2011.

[34] J. Bae, J. Lee, A. Jang, Y. K. Ju, and M. J. Park, “Smart sky eye system for preliminary structural safety
assessment of buildings using unmanned aerial vehicles.” Sensors (Basel, Switzerland), vol. 22, no. 7, pp.
2762–2762, 4 2022.

[35] K.-Y. Li, N. Burnside, R. S. de Lima, M. V. Peciña, K. Sepp, V. H. C. Pinheiro, B. R. C. A. de Lima, M.-D.
Yang, A. Vain, and K. Sepp, “An automated machine learning framework in unmanned aircraft systems: New
insights into agricultural management practices recognition approaches,” Remote Sensing, vol. 13, no. 16, pp.
3190–, 8 2021.

[36] J. W. Crampton, “Assemblage of the vertical: commercial drones and algorithmic life,” Geographica Helvetica,
vol. 71, no. 2, pp. 137–146, 6 2016.

[37] J. Reuder, M. Ablinger, H. Ágústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M. O.
Jonassen, R. Kuhnel, S. Lämmlein, T. E. de Lange, C. Lindenberg, S. Malardel, S. Mayer, M. Müller,
H. Ólafsson, Ólafur Rögnvaldsson, W. Schäper, T. Spengler, G. Zängl, and J. Egger, “Flohof 2007: an overview
of the mesoscale meteorological field campaign at hofsjökull, central iceland,” Meteorology and Atmospheric
Physics, vol. 116, no. 1, pp. 1–13, 1 2011.

[38] G. Lu, “Concentrated stream data processing for vegetation coverage monitoring and recommendation against
rock desertification,” Processes, vol. 10, no. 12, pp. 2628–2628, 12 2022.

[39] A. K. G and K. Santhi, “Dynamic routing for flying ad hoc networks,” IJARCCE, vol. 6, no. 4, pp. 161–170,
4 2017.

Copyright © Morphpublishing Ltd. 16 Morphpublishing , 1–17
Published in CURRENT ISSUE



Morphpublishing

[40] J. Kersten and V. Rodehorst, “Enhancement strategies for frame-to-frame uas stereo visual odometry,” The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B3,
pp. 511–518, 6 2016.

[41] K. Schweiger and L. Preis, “Urban air mobility: Systematic review of scientific publications and regulations for
vertiport design and operations,” Drones, vol. 6, no. 7, pp. 179–179, 7 2022.

[42] P. Marcoň, J. Janoušek, J. Pokorný, J. Novotný, E. V. Hutová, A. Širůčková, M. Cap, J. Lázničková, R. Kadlec,
P. Raichl, P. Dohnal, M. Steinbauer, and E. Gescheidtova, “A system using artificial intelligence to detect and
scare bird flocks in the protection of ripening fruit.” Sensors (Basel, Switzerland), vol. 21, no. 12, pp. 4244–,
6 2021.

[43] H. Nawaz, H. M. Ali, and A. A. Laghari, “Uav communication networks issues: A review,” Archives of
Computational Methods in Engineering, vol. 28, no. 3, pp. 1349–1369, 3 2020.

Morphpublishing , 1–17 17 Copyright © Morphpublishing Ltd.
Published inCURRENT ISSUE


	1 Introduction
	2 Formal System Modeling and Robustness Objectives
	3 Background on Detect-and-Avoid Architectures
	4 Modeling Sensor Degradation in Detect-and-Avoid Pipelines
	5 Robustness to Erroneous and Inconsistent Inputs
	6 Interference and Adversarial Scenarios
	7 Integrated Robustness Assessment Framework
	8 Simulation-Based Evaluation and Discussion
	9 Conclusion

