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Comparative Evaluation of Graph, Hierarchical, and Relational
Structuring Paradigms in Large Commonsense Knowledge Bases

Omar Alfarouqa, Ahmad Alnaserb

Abstract: Commonsense knowledge bases (CSKBs) serve as foundational infrastructures for enabling
machines to reason about everyday concepts. While numerous structuring paradigms exist, their comparative
efficacy in balancing expressivity, computational efficiency, and scalability remains underexplored. This
paper presents a systematic evaluation of graph-based, hierarchical, and relational database approaches
for organizing large-scale CSKBs. Graph representations model knowledge as nodes and edges, enabling
flexible traversal but incurring overhead in path-sensitive queries. Hierarchical methods, such as taxonomies,
optimize inheritance reasoning but struggle with cross-domain ambiguity. Relational paradigms, grounded
in formal set theory, enforce strict normalization constraints that enhance integrity but limit dynamic
expansion. We formalize each paradigm using algebraic structures, predicate logic, and complexity-theoretic
metrics. A novel hypergraph-based hybrid model is proposed to mitigate rigidity in relational systems
while preserving hierarchical inheritance. Experiments on ConceptNet, WordNet, and a proprietary dataset
quantify throughput for subsumption, adjacency, and transitivity queries. Results indicate relational systems
outperform others in conjunctive queries (F1: 0.92 vs. 0.78 for graphs) but exhibit exponential latency
growth during schema revisions. Graph-based approaches achieve high recall in path queries but require
heavier indexing. Hierarchical systems optimize memory usage but suffer precision loss in multi-inheritance
contexts. The hybrid model reduces transitivity errors by 37% via constraint-driven edge weighting. This
work offers framework-agnostic optimization guidelines for CSKB engineers.
Copyright © Morphpublishing Ltd.

1. Introduction

Humans rely on commonsense knowledge to navigate routine tasks and interpret contextual cues. As artificial
intelligence systems increasingly integrate into complex real-world environments, they require a robust layer of
commonsense reasoning to disambiguate user queries, infer implicit relationships, and adapt to novel situations.
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Commonsense knowledge bases (CSKBs) encode such everyday facts, ranging from physical interactions (e.g.,
“bottles contain liquids”) to sociocultural norms (e.g., “shaking hands is a greeting”). Although large-scale CSKBs
like ConceptNet, WordNet, and YAGO have existed for years, the internal representation structure used to store
and retrieve their knowledge can drastically affect performance, scalability, and flexibility [1] [2].

A fundamental challenge in CSKB construction is the trade-off between structured formalism and expressive
flexibility. Graph-based representations, such as those used in ConceptNet, store commonsense facts as triples
(subject, relation, object), facilitating efficient reasoning and retrieval. These representations excel in relational
inference but often struggle with capturing nuanced contextual variations. On the other hand, distributional
representations, including embeddings trained on large text corpora, model commonsense as high-dimensional
vector spaces where semantic similarities emerge through proximity. While these embeddings provide adaptability,
they inherently lack explicit, human-interpretable relations [3] [4] [5, 6]. A hybrid approach that fuses structured
graphs with distributional semantics can enhance both interpretability and generalizability. Recent advances leverage
transformer-based language models to dynamically retrieve and synthesize commonsense knowledge, bridging the
gap between static knowledge bases and adaptive contextual understanding.

The acquisition of commonsense knowledge poses additional difficulties due to its implicit nature. Unlike
encyclopedic facts, which can be extracted from structured databases or textual corpora, commonsense knowledge
is often unstated because it is assumed to be universally known. As a result, automated methods must infer
such knowledge from indirect signals. Crowdsourcing has played a pivotal role in building CSKBs, with projects
like ATOMIC relying on human annotators to contribute inferential commonsense relationships (e.g., “If someone
apologizes, they likely feel regret”). However, this approach is labor-intensive and susceptible to biases. Alternatively,
self-supervised learning methods have emerged, where language models distill commonsense knowledge by predicting
missing information in large corpora. These methods reduce human effort but introduce challenges in filtering
hallucinated or nonfactual inferences.

Evaluating the quality of commonsense knowledge representations requires robust benchmarks. Metrics such
as coverage, coherence, and applicability help assess the utility of a CSKB. Coverage quantifies the breadth
of knowledge encoded within a resource, ensuring that diverse domains such as physics, psychology, and social
conventions are represented. Coherence measures the logical consistency of stored facts, identifying contradictions
or redundancies that could impair reasoning. Applicability evaluates how effectively a CSKB supports downstream
tasks, including question answering, dialogue generation, and robotic planning. Standardized datasets like CSQA
(CommonsenseQA) and PIQA (Physical Interaction QA) serve as benchmarks for assessing the practical impact
of commonsense reasoning models [7] [8] [9].

A comparison of major CSKBs in terms of structure, coverage, and applications is shown in Table 1.

Advancements in neural symbolic reasoning have further enhanced commonsense knowledge integration. Symbolic
AI, which traditionally relies on logic-based representations, has been combined with neural architectures to improve
inference capabilities. Neuro-symbolic systems allow explicit rule-based commonsense reasoning while leveraging
deep learning for generalization. This hybrid approach improves the adaptability of AI systems in novel scenarios,
where purely symbolic methods lack flexibility, and purely neural methods struggle with interpretability [10] [11]
[12] [13].

Real-world deployment of commonsense reasoning systems faces practical obstacles, including computational
efficiency and domain-specific adaptation. Large-scale knowledge bases require optimized storage and retrieval
mechanisms to ensure real-time applicability. Indexing techniques such as graph embeddings, sparse attention
mechanisms, and knowledge distillation have been employed to enhance efficiency. Additionally, domain adaptation
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Table 1. Comparison of Major Commonsense Knowledge Bases

CSKB Representation Coverage Application Domains
ConceptNet Graph-based triples Broad (linguistic,

social, physical)
NLP, chatbots, reason-
ing tasks

WordNet Lexical hierarchy Linguistic focus Word sense
disambiguation,
ontology construction

YAGO Ontological knowledge
graph

Encyclopedic and fac-
tual

Semantic search, linked
data

ATOMIC Event-based inferential
triples

Social and psychologi-
cal norms

Narrative
understanding, human-
AI interaction

strategies, including transfer learning and few-shot learning, allow AI systems to specialize commonsense reasoning
for medical, legal, or scientific applications. Context-aware commonsense integration remains a crucial research
direction, where AI systems dynamically adjust their reasoning strategies based on situational cues.

A deeper analysis of commonsense reasoning integration in AI applications is presented in Table 2.

Table 2. Commonsense Knowledge in AI Applications

Application Domain Commonsense Requirements Examples
Conversational AI Understanding implicit intents,

contextual inference
Chatbots, virtual assistants

Robotics Physical world interaction, causal
reasoning

Autonomous navigation, human-
robot collaboration

Healthcare AI Medical commonsense, patient
interaction reasoning

Clinical decision support, symp-
tom checking

Autonomous Systems Scenario prediction, hazard iden-
tification

Self-driving cars, risk assessment

There are three widely adopted paradigms for structuring large CSKBs. The first involves graph-based
architectures, which typically represent concepts as vertices, relationships as edges, and sometimes incorporate
weights or labels for fine-grained semantics. These methods are amenable to multi-hop traversals using adjacency
matrices or lists, and they can capture irregular structures well. However, large graphs can introduce complex
cycles and high storage overhead when indexing adjacency lists or matrices. A second paradigm arranges concepts
in hierarchical or taxonomic structures, imposing partial orders to accelerate subsumption queries. Hierarchical
methods provide efficient single-inheritance relationships and can exploit specialized indexing to answer questions
about superclass and subclass relations. Yet they tend to suffer under multi-inheritance or cross-domain expansions,
requiring ad-hoc workarounds that can degrade precision [14] [15].

Relational approaches form the third paradigm, modeling concepts and relations in tables under strict
normalization principles. By enforcing formal schemas, they provide robust integrity checks, concurrency control,
and well-studied query optimization strategies. Nonetheless, relational designs can be cumbersome for capturing
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highly dynamic or semistructured commonsense facts. Multi-hop reasoning often requires multiple self-joins and
can degrade performance if the database schema is not carefully tuned [16] [17] [18] [19, 20].

Selecting among these paradigms is nontrivial. Each provides trade-offs in logic expressivity, update efficiency,
memory usage, and typical query latency. For instance, a graph-based CSKB might excel at answering adjacency or
path queries but becomes unwieldy if the system must frequently perform deeper classification or enforce complex
constraints. A hierarchical approach is elegant for consistent taxonomies with well-defined inheritance paths, but
handling cyclical or cross-branch relationships can demand significant engineering overhead. Relational databases
are highly mature from a software engineering perspective, with powerful transactional guarantees, yet they can
prove restrictive in representing the open-ended nature of commonsense facts [21] [22] [23]. To further illustrate
the strengths and weaknesses of these paradigms, Table 3 provides a comparative analysis based on key operational
and structural characteristics.

Table 3. Comparison of CSKB Structuring Paradigms

Paradigm Strengths Weaknesses Best Use Cases
Graph-based Flexible structure,

efficient for adjacency
queries, supports multi-
hop reasoning

High storage overhead,
complex indexing,
potential cyclic
dependencies

Commonsense
inference, knowledge
discovery

Hierarchical Efficient single-
inheritance, fast
subsumption queries,
structured organization

Poor handling of
multi-inheritance,
limited cross-domain
adaptability

Taxonomies, structured
domain ontologies

Relational Strong integrity
constraints, optimized
querying, concurrency
control

Rigid schemas, diffi-
cult to model semi-
structured facts, per-
formance bottlenecks in
deep reasoning

Well-defined, static
domains requiring data
consistency

Given these trade-offs, recent developments in hybrid CSKB architectures have sought to leverage the advantages
of multiple paradigms. For example, hybrid models often store structured relational data alongside graph-based
indices, allowing flexible traversal without sacrificing query optimization. Additionally, embeddings derived from deep
learning models have been integrated into CSKBs to provide a latent semantic representation of commonsense
knowledge. This enables AI systems to interpolate between explicit relational structures and implicit knowledge
captured from unstructured text corpora [24] [25] [26].

The evolution of commonsense reasoning frameworks has also led to the development of modular architectures
where different components specialize in specific reasoning tasks. A knowledge graph module may handle
connectivity and entity resolution, while a hierarchical layer provides structured taxonomy-based inferences, and
a neural embedding module enhances flexibility by capturing contextual variations. These modular approaches offer
a promising direction for scalable CSKBs, allowing fine-tuned performance adjustments depending on the application
requirements.

Despite these advancements, ensuring robustness in commonsense knowledge integration remains a challenge.
Real-world AI applications often require rapid updates to accommodate newly emerging knowledge, and rigid
database structures may struggle with the dynamic nature of commonsense facts. Streaming updates and
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incremental learning strategies are being explored to allow CSKBs to evolve continuously without requiring full
retraining or expensive re-indexing. Moreover, explainability remains a key concern, as opaque reasoning processes
can hinder user trust and adoption in high-stakes domains like healthcare, law, and autonomous systems [27] [28]
[29].

A particularly important consideration in structuring CSKBs is their adaptability to multi-modal reasoning.
Traditional knowledge bases primarily focus on text-based representations, but integrating visual, auditory, and
sensory data sources enhances their ability to model real-world contexts. Multi-modal commonsense learning seeks
to bridge this gap by fusing linguistic knowledge with perceptual signals, thereby improving AI’s ability to interpret
human interactions, recognize affordances in objects, and reason about cause-effect relationships in the physical
world.

Table 4 summarizes various hybrid CSKB strategies, highlighting their architectural composition and typical
advantages.

Table 4. Hybrid CSKB Strategies and Their Advantages

Hybrid Model Type Architectural Composition Key Advantages
Graph-Relational Hybrid Graph-based reasoning combined

with relational data integrity
Enables flexible traversal while
maintaining strict data consis-
tency

Neural-Symbolic
Integration

Deep learning embeddings com-
bined with rule-based logic

Enhances adaptability and infer-
ence while preserving explicit
reasoning

Multi-Modal
Commonsense Model

Text-based CSKBs integrated
with visual and sensory data

Improves contextual reasoning in
real-world scenarios

To elucidate these concerns, this paper examines each paradigm from multiple perspectives. A formal review
includes algebraic characterizations of adjacency matrices and transitive closures, hierarchical partial orders, and
relational joins. Complexity analyses illustrate the computational cost of common CSKB operations, such as
insertion of new concepts, resolution of multi-hop queries, and reorganization of schema definitions. Furthermore,
benchmark experiments on real and synthetic data shed light on trade-offs in accuracy, latency, and resource
consumption across graph-based, hierarchical, and relational representations [30] [31] [32].

In addition, the paper introduces a hybrid hypergraph-based architecture that blends the strengths of different
paradigms to mitigate their individual shortcomings. Specifically, the approach constructs a set of typed hyperedges
for more flexible connectivity, coupled with a partial hierarchy for consistent taxonomic reasoning. This model aims
to preserve the efficient inheritance features found in strictly hierarchical systems while simultaneously providing
the lateral flexibility of graph-based designs and the rigorous constraints found in relational databases.

Section-by-section, the discussion proceeds as follows. First, key concepts of graph-based knowledge structuring
are explored, highlighting the role of adjacency matrices, label semantics, and eigenvalue-based computations.
The next section delves into hierarchical representations, focusing on partial orders, single- and multi-inheritance
constraints, and the management of cross-domain ambiguities. Relational paradigms for CSKBs then come to the
forefront, introducing the notion of normal forms, the cost of join operations, and the unique challenges of dynamic
schema evolution. An in-depth comparative analysis follows, featuring formal complexity theorems and a conceptual
mapping of each paradigm’s strengths. Building on these observations, the paper proposes a hybrid model, showing
how hypergraph components can be integrated with hierarchical structures for improved multi-hop reasoning and
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controlled redundancy. Finally, an experimental evaluation is presented, detailing the empirical performance of each
paradigm under diverse query workloads, followed by a conclusion summarizing key findings and directions for future
research [33] [34] [35, 36].

This introduction has underscored the motivation and objectives underlying the study, emphasizing the importance
of representation choices in the design of CSKBs. The subsequent sections develop these themes in detail, providing
both theoretical rigor and real-world benchmarks. Readers seeking to deploy or refine large-scale commonsense
reasoning systems will find actionable insights, as well as pointers to advanced optimization techniques.

2. Graph-Based Knowledge Structuring

Graph representations conceptualize CSKBs as directed (or undirected) structures composed of nodes and edges.
Formally, let a knowledge graph be denoted by G = (V, E), where each vertex vi ∈ V corresponds to a concept or
entity, and each edge ei j ∈ E signifies a relationship from vi to vj . Edges often carry labels l(ei j) ∈ L to denote
relation types such as IsA, PartOf, or Causes. Weights wi j in [0, 1] can capture confidence scores or semantic
similarity.

A fundamental operation in many graph-based CSKBs is the multi-hop query, which asks whether a path exists
from one concept to another through intermediate relations. To handle such queries systematically, adjacency
matrices are often used. Define an |V | × |V | matrix A such that Ai j = wi j if there is an edge from vi to vj , and
Ai j = 0 otherwise. Multi-hop paths of length k can be tracked by computing Ak , using semiring operations ⊕ and ⊗
if the domain extends beyond simple Boolean logic. For example, in a probabilistic setting, ⊗ might be multiplication
for combining the probabilities of consecutive edges, while ⊕ might be a max or sum operator for parallel path
aggregation.

An illustrative logic statement for adjacency can be written as:

(∃vk)
(
(vi , vk) ∈ E ∧ (vk , vj) ∈ E

)
⇐⇒ (A2)i j ̸= 0.

In the case of length-2 paths, the existence of at least one intermediate vertex vk fulfilling the adjacency condition
implies a nonzero entry in the squared adjacency matrix. Extending this logic to higher-order paths becomes
computationally more expensive, particularly when cycles exist in the graph. Cycles can inflate the spectral radius
ρ(A), leading to slower convergence in iterative algorithms that approximate Ak or attempt to compute transitive
closures. Jordan normal forms and eigenvalue decomposition can theoretically accelerate matrix exponentiation,
but implementing these techniques at scale is resource-intensive.

From a storage perspective, graph-based systems often adopt adjacency lists instead of dense matrices, especially
when the knowledge graph is large but relatively sparse. If |E| is on the order of m, adjacency lists can reduce space
complexity relative to the O(n2) overhead of storing a full matrix. Compressed representations, such as Huffman-
coded edge lists, exploit the frequency distribution of edges. However, real-world CSKBs can still accumulate
millions of edges, making memory consumption a critical issue. Dynamic updates—such as inserting a new concept
vnew with d edges—must also be handled. An update may require pointer manipulations in adjacency lists, leading
to fragmentation or reallocation overheads that degrade performance over time [37] [38] [39].

Another challenge lies in ensuring consistency and reducing noise in graph-based CSKBs. Because new edges or
relationships might be introduced from automated extractors or crowd-sourcing, contradictory facts can appear.
Algorithms that prune low-weight edges or attempt to unify semantically redundant vertices can partially address
this. Constraints can be expressed in propositional or predicate logic. A sample rule for conflict detection might
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read:
¬((vi , vj) ∈ E ∧ l(ei j) = IsA ∧ l(ei j) = NotA).

In words, no vertex pair can simultaneously hold an IsA relation and a NotA relation of the same type. While
straightforward, systematically detecting these conflicts at scale can be nontrivial.

Despite these drawbacks, graph-based representations remain popular due to their flexibility. Highly
interconnected knowledge domains, such as cause-effect or part-whole relationships spanning multiple semantic
categories, benefit from unconstrained adjacency. Graph traversal algorithms, from simple breadth-first searches
to more advanced label-propagation and embedding techniques, can glean insights from the global connectivity
structure. For instance, random walk–based embeddings or spectral methods that factorize A into lower-dimensional
representations can discover latent groupings of concepts for downstream tasks.

In typical benchmarks, graph-based CSKBs handle multi-hop adjacency queries efficiently as long as the number of
steps k remains small. Performance degrades with deeper queries because the search space expands exponentially in
the number of possible paths. Meanwhile, updates occur relatively smoothly if the concurrency level is not extreme.
Systems such as ConceptNet demonstrate the viability of large-scale graph-based commonsense reasoning, offering
integration with natural language processing pipelines. However, as we shall see in later sections, hierarchical or
relational paradigms may outperform graph-based systems in specific workloads that emphasize rigid classification
or frequent relational joins [40] [41] [42].

3. Hierarchical Knowledge Organization

Hierarchical or taxonomic structures impose a partial order on concepts, capturing subsumption (e.g., “an apple is
a kind of fruit”) and enabling consistent inheritance. Formally, define a hierarchy T as a directed acyclic graph in
which each node vi has at most one immediate parent, enforcing single inheritance. A more general structure may
allow multiple parents but at the cost of complicating inheritance logic.

Let vi ⪯ vj denote that concept vi is a subclass (or sub-concept) of vj . In a tree-based CSKB, each node has a
path to a root concept, and queries about whether vi is subsumed by vj involve tracing upward links until either vj
is encountered or the root is reached. The complexity for such a lookup in a balanced tree is O(log n). However,
many knowledge hierarchies are not strictly balanced, and some subtrees may grow disproportionately.

A logic statement capturing subsumption might read:

(vi ⪯ vj) ∧ (vj ⪯ vk) =⇒ (vi ⪯ vk).

Transitivity is a cornerstone of hierarchical reasoning, ensuring that membership in a lower-level category implies
membership in all ancestor categories. In systems like WordNet, these transitive properties speed up “hypernym
queries” (queries about superclasses of a concept), which can be resolved via path tracing. To accelerate repeated
queries, many implementations store memoized paths or transitive closures so that subsumption checks become
constant-time lookups.

However, multi-inheritance arises naturally in domains with overlapping categories. For instance, “tomato” might
be simultaneously classified as a vegetable and a fruit, leading to diamonds in the inheritance graph. Formally, for
a node vi with parents va and vb, these parents might share their own ancestors or attributes, and merging them
becomes nontrivial. Some taxonomic CSKBs address this by replicating subtrees or introducing intersection nodes
va ⊓ vb, but such maneuvers can bloat the hierarchy and erode semantic clarity [43] [44] [45].
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A typical disadvantage of purely hierarchical representations is limited support for lateral relationships. If a concept
has many peer-level connections, the hierarchy cannot capture them directly without adding cross-links, which break
the acyclic property. Incorporating these links either transforms the structure into a more general graph or forces
the creation of “pseudo-hierarchies.” This can blur the conceptual neatness of a single-inheritance tree.

Memory usage in hierarchical CSKBs can be reduced through entropy-aware encodings. Frequency-based
compression assigns shorter codes to more common concepts, leveraging Huffman-like schemes to store node
identifiers. Such compression is especially useful if the system stores repeated paths or partial subtrees for fast
lookups. Symbolically, if f (vi) denotes the frequency of concept vi , then the overall storage cost is bounded by
−
∑
vi
f (vi) log f (vi). By restructuring the hierarchy to cluster frequently accessed concepts closer to the root or

each other, the average path length for common queries decreases, lowering latency.

Dynamically updating a hierarchical CSKB poses unique challenges. When a new concept vnew arrives, placing
it into the correct location might require multiple heuristics or a reasoning engine to identify its superclasses. The
insertion cost includes searching for the appropriate parent nodes and potentially rebalancing the tree if performance
is to be maintained. In real-world scenarios where the domain evolves (e.g., new technologies, newly discovered
species), such rebalancing can become continuous, requiring careful design to avoid reclassification storms [46] [47]
[48].

Despite these caveats, hierarchical structures shine when the domain naturally fits into well-defined taxonomies
and when queries are dominated by subsumption or inheritance checks. The transitive nature of hierarchical
relationships can be exploited with specialized indexing, making them advantageous in tasks such as lexical
hierarchies, product catalogs, or scientific nomenclatures. Multi-level concept classification, as encountered in
many expert systems, often maps neatly to hierarchical representation.

Extensive usage of hierarchical CSKBs can be found in lexical databases, which define hypernym and hyponym
relationships among words and synsets. WordNet exemplifies how synonyms cluster around conceptual nodes, while
higher levels define abstract groupings like “artifact” or “physical entity.” Empirical results indicate that inheritance
queries (who is the superclass or subclass?) can be resolved very fast when the data is strictly hierarchical. However,
if cross-links or multiple inheritance are introduced, the advantage over other paradigms can diminish. Indeed, large-
scale expansions in multi-domain contexts can degrade precision if the system tries to unify semantically diverse
branches under a single taxonomic framework [49] [50] [51] [52, 53].

Balancing depth and breadth in hierarchical CSKBs is a design challenge. Deep hierarchies can hamper
performance in worst-case queries, while broad hierarchies can create an unwieldy top-level with too many siblings.
Various balancing algorithms, such as red-black tree analogs or B-tree variants, have been proposed, but they
typically assume uniform distributions of concept frequency. In practice, usage frequency might follow a Zipfian
distribution, and advanced clustering based on concept embeddings can sometimes yield more efficient structures.
These embeddings leverage transformations φ : vi 7→ zi ∈ Rd to group semantically similar concepts into subtrees,
lowering average path lengths among frequently related concepts.

4. Relational Paradigms for CSKBs

Relational approaches model CSKBs using tuples stored in relations with well-defined schemas. Let a
schema Σ contain a set of relations R1, R2, . . . , Rk , each with attributes (A1, A2, . . . , Am) and domain
constraints. A typical design might store concepts in a table Concepts(CID, Name, . . .) and relations in a table
Relations(CID1, CID2, RelationType, . . .). Queries, expressed in SQL, can join these tables to answer questions
about adjacency, subsumption, or other associations.
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A key principle is normalization, which reduces redundancy by decomposing relations according to functional
dependencies. For example, if a certain attribute functionally determines another, the relation is split to minimize
update anomalies. Third normal form (3NF) or Boyce-Codd normal form can ensure that the stored CSKB is
consistent with respect to common dependencies. However, querying a heavily normalized schema can demand
multiple joins, increasing query latency.

Transitive relationships—common in commonsense reasoning—require iterative or recursive queries in SQL. For
example, to check whether vi ⪯ vj under a transitive relationship, one might define a recursive common table
expression (CTE):

WITH RECURSIVE Subsumed(X,Y) AS (SELECT vi , vj FROM Relations UNION ALL SELECT X, R.CID2 FROM Subsumed, Relations R WHERE Subsumed.Y = R.CID1)

Such queries can become expensive if the graph is large or dense. Relational systems mitigate this using indexing
strategies—such as B-trees or hashing on join attributes—to accelerate lookups. Denormalization is another
strategy, storing materialized paths or closures in additional tables to reduce join complexity at the expense of
higher update costs.

From a logical standpoint, constraints in relational CSKBs are encoded as integrity constraints (ICs), such as
primary key constraints, foreign keys, and check conditions. These constraints can capture partial orders, disallow
contradictory relations, or enforce domain ranges. A formal representation might define a set of clauses like:

(∀t ∈ Relations) (t.RelationType ∈ {IsA, PartOf, Causes}).

Any insertion violating these constraints is rejected, preserving data consistency. Moreover, triggers can be used
to maintain derived facts or propagate changes, although they must be carefully designed to avoid infinite loops in
the case of transitive relationships.

Performance in relational CSKBs often excels for selective queries that can utilize indexes or that combine small
subsets of tables. For instance, a query to find immediate children of a given concept can be answered with an
index on CID1. However, more complex queries, especially those requiring deep traversal or dynamic expansions,
can degrade significantly. The underlying relational engine may need to execute multiple joins or recursively traverse
a large portion of the data [54] [55] [56].

Scalability under frequent updates can be both a strength and a weakness. On one hand, relational database
management systems (RDBMSs) typically offer transactional guarantees (ACID properties) and concurrency
control, enabling robust multi-user environments. On the other hand, the schema design must be carefully considered
for large-scale or rapidly evolving commonsense knowledge. Adding new relation types might entail altering table
schemas, triggers, and stored procedures, which can be cumbersome.

Empirical studies indicate that relational CSKBs achieve high precision in queries that match well with SQL’s
conjunctive query model, such as retrieving all concepts that satisfy certain attributes or relationships. However,
long chain inferences (e.g., “Is there a path of length 4 from concept A to concept Z?”) often necessitate repeated
self-joins or recursive queries, stressing both query optimizers and storage engines. Techniques like the transitive
closure relation approach can accelerate these queries, but the closure must be recomputed or incrementally updated
when the knowledge base changes, which can be expensive.

In sum, relational paradigms bring rigor, well-studied optimization frameworks, and data integrity features, making
them appealing for enterprise-grade CSKBs that rely on stable schemas. They are particularly well-suited to domains
where types of relationships and concept attributes are relatively static, or where short or shallow queries dominate.
In dynamic or highly interconnected knowledge domains, the overhead of repeatedly restructuring the schema or
materializing closures can become prohibitive.
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5. Comparative Analysis and Hybrid Models

To systematically compare the paradigms, denote them as G (graph-based), H (hierarchical), and R (relational).
Four major criteria are relevant for CSKB engineers:

(1) Query Latency. Each paradigm exhibits different complexity for common CSKB queries:

Subsumption: vi ⪯ vj , Adjacency: (vi , vj) ∈ E, Transitivity: (vi , vj) ∈ R∗,

where R∗ represents the transitive closure of a relation. Hierarchical structures excel at subsumption, often yielding
constant or logarithmic time if indexes are precomputed. Graph-based approaches handle adjacency queries directly
but can slow down for deeper transitive queries unless additional indexing is in place. Relational systems typically
do well with selective queries and short join chains but may become slow for extensive recursion.

(2) Storage and Update Costs. Hierarchical representations achieve high compression for tree-like structures,
but multi-inheritance can lead to duplication. Graph-based systems handle arbitrary relationships seamlessly but
might consume more space storing adjacency lists or matrices, especially if the graph is dense. Relational schemas
can eliminate redundancy through normalization, albeit at the cost of multi-table joins for queries. Updates that
involve adding a new type of relationship or concept are easiest for G, moderately complex for H, and potentially
costly for R if the schema must be altered.

(3) Expressivity and Logic Constraints. Graph models represent arbitrary relationships, supporting flexible edges
and dynamic expansions. Hierarchies naturally encode transitive ⪯ relations but can struggle with cross-domain or
cyclical facts. Relational designs encode constraints systematically via integrity conditions but can require schema
modifications when new relation types emerge.

(4) Concurrency and Transactional Integrity. Relational databases stand out in transaction support and
concurrency control, ensuring data consistency in multi-user environments. Graph systems typically provide
concurrency at the level of node/edge operations, but atomic updates across multiple subgraphs can be harder to
manage. Hierarchical approaches sometimes lack robust concurrency models, requiring custom solutions for locking
or versioning if the CSKB is frequently updated.

No single paradigm dominates uniformly. Instead, real-world deployments often combine them or adopt strategies
that bridge their strengths. One such hybrid approach is to store conceptual taxonomies hierarchically while
encapsulating lateral relationships in a graph overlay. Another method is the so-called “hypergraph-based” approach.
A hypergraph generalizes edges to connect more than two vertices, allowing for complex multi-party relationships
(e.g., “mix flour, water, and yeast to make dough”) to be stored as a single hyperedge.

Define a hypergraph H = (V, E), where each hyperedge e ∈ E is a subset of V. In a CSKB context, V might
contain concepts, and each hyperedge encodes a relation among multiple concepts. This representation can be
augmented with a partial hierarchy for nodes that exhibit clear subsumption relationships, forming a two-level
system: a hypergraph for lateral or complex relations and a tree-like structure for classification [57] [58] [59] [60].

Logic constraints in a hypergraph-based model can specify how hyperedges should be interpreted. For instance,
if a hyperedge e indicates a “composite concept,” transitivity might only apply to certain subsets. Weights can also
be assigned to hyperedges to reflect confidence or partial membership. This design aims to maintain the inheritance
benefits of a taxonomy for well-structured portions of the knowledge while accommodating looser or multi-entity
facts via the hypergraph component.

Experimental results from prototype systems suggest that a hybrid approach can reduce transitivity errors by
leveraging a hierarchical backbone for strict subclass relationships. Meanwhile, multi-entity relationships do not
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force duplication or break the single-inheritance structure, as they can be stored in hyperedges. A simple weighting
scheme might set

wφ(e) = α ·

(∏
vi∈e

deg(vi)−1
)
,

where deg(vi) is the degree of concept vi (the number of hyperedges it participates in) and α is a normalization
constant. Such weighting discourages hyperedges from connecting overly popular nodes in a trivial way, improving
precision when searching for meaningful relationships.

In practice, implementing a hybrid model requires careful indexing. One might keep a standard adjacency list
for pairwise edges plus a specialized table or file for hyperedges. Subsumption queries rely on a hierarchical store,
possibly a dedicated tree structure with O(log n) lookups if balanced. Queries about complex relationships consult
the hypergraph store, performing set intersections or specialized joins.

Although this approach can deliver strong results in multi-domain CSKBs, it is not without cost. The system
complexity increases, as two or more data structures must be maintained and kept consistent. Database transactions
or synchronization mechanisms might need to manage cross-paradigm updates. Yet for large-scale, continuously
evolving commonsense data—where certain facts form a stable taxonomy, and others remain fluid or multi-
concept—the flexibility of a hybrid design can provide a useful compromise.

6. Experimental Evaluation

Datasets and Setup

Three primary datasets were employed. The first was ConceptNet, representative of a large, crowd-sourced, graph-
based CSKB with diverse relations. The second, WordNet, served as a canonical hierarchical or taxonomic resource
for lexical relationships (hypernyms, hyponyms). Lastly, YAGO3 showcased a relational perspective, featuring
structured facts extracted from Wikipedia, WordNet, and other sources in a relational form.

A synthetic dataset was also generated to uniformly test each paradigm under consistent structural assumptions.
This dataset included ≈ 1.2× 106 triples, artificially partitioned into “taxonomic” and “non-taxonomic” facts. For
each paradigm, data was loaded according to best practices (e.g., adjacency lists for the graph system, balanced
trees for the hierarchy, normalized tables for the relational database). The hybrid approach was applied to a
combined version of ConceptNet and WordNet, where hierarchical edges were identified and placed in a tree, and
all other edges were mapped to a hypergraph structure.

Hardware for the experiments consisted of a multi-core server with 256 GB RAM, SSD storage, and a 10
Gbps network interface. Software included Neo4j and custom graph libraries for graph-based tests, a specialized
hierarchical engine for WordNet, PostgreSQL for relational queries, and a prototype for the hybrid system. All
systems ran locally to avoid network latencies and used default configurations unless otherwise stated [61] [62]
[63].

Queries and Metrics

Four query types were tested:

Qs : subsumption checks (vi ⪯ vj), Qa : adjacency checks (vi , vj) ∈ E,

Qt : transitivity or k-hop checks, Qc : conjunctive SQL queries with multiple conditions.
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In graph-based systems, Qs was simulated by imposing an IsA label on edges, approximating a partial order.
Hierarchical systems directly used tree-based lookups for Qs . Relational queries used either standard joins or
recursive CTEs.

Performance was evaluated via precision and recall, where ground truth was established by domain experts or
cross-dataset consensus. For adjacency queries, correctness meant identifying the existence (or absence) of a
direct relationship. For subsumption and transitivity, correctness required matching known ancestor–descendant or
multi-hop paths. Conjunctive queries demanded retrieving all items meeting specified conditions on attributes and
relations. Latency was measured as the average response time across a batch of 10,000 queries, while memory
usage was monitored via OS-level metrics [64] [65] [66] [67, 68].

Results

Graph-based performance. ConceptNet-inspired configurations excelled in adjacency checks (Qa), achieving recall
levels above 98% and sub-20ms query times. However, transitivity queries (Qt) proved more challenging, especially
for deeper paths, due to cyclical segments. Precision dropped to 0.67 on average, as noise edges led to spurious
paths. Memory overhead was high when indexing multi-hop paths for faster lookups, indicating a trade-off between
space and time.

Hierarchical performance. WordNet-based structures yielded consistently fast subsumption queries (Qs), often
below 10ms, thanks to efficient path compression. Transitivity was similarly swift if the relationship was purely
taxonomic. In artificially induced multi-inheritance scenarios, performance degraded, and precision dropped by
around 22% because of ambiguous merges. Memory usage was relatively modest, especially under entropy-aware
encoding.

Relational performance. On short-range queries (Qa, Qs), relational schemas achieved high precision (over
0.90) and stable recall. Performance for deep transitivity or iterative join queries slowed drastically if indexes could
not prune the search space. Conjunctive queries with modest joins (two or three tables) were highly efficient. Larger
joins, recursive paths, and dynamic schema updates caused exponential growth in query times, as the optimizer
struggled to find efficient plans.

Hybrid performance. The hypergraph-plus-hierarchy prototype showed balanced results across all query types,
with average latencies around 85ms. It did not match the fastest single-paradigm results on specific queries
(e.g., pure adjacency checks were faster in a graph system), but it avoided the worst-case slowdowns typical
in hierarchical multi-inheritance or deep relational joins. Transitivity errors were reduced by 37% relative to the
pure graph approach, thanks to partial enforcement of hierarchical constraints. Storage overhead was moderate,
and updates were more complex than in a pure system but remained tractable [69] [70] [71].

An ANOVA test (F (3, 496) = 78.4, p < 0.001) confirmed statistically significant differences in average latency
among G, H, R, and the hybrid model. Post-hoc Tukey comparisons indicated that the hybrid solution achieved a
superior balance of performance metrics (precision, recall, latency), although single-paradigm systems could outdo
it on narrowly specialized queries or data distributions.

Discussion of Observations

These results highlight how each paradigm fits distinct usage patterns. Graphs excel at flexible adjacency and
single-hop queries, making them a strong choice for recommendation engines or real-time inference. Hierarchies
demonstrate robust subsumption performance in stable domains with well-defined categories. Relational databases
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shine in structured, stable settings where concurrency and multi-attribute queries are critical, but they can be
unwieldy for complex, emergent relationships. The hybrid approach suggests that combining partial hierarchies
with generalized hyperedges can reduce systemic weaknesses, albeit at the cost of higher design and maintenance
complexity [72] [73] [74] [75].

7. Conclusion

This paper presented a comprehensive exploration of three primary paradigms for structuring large-scale
commonsense knowledge bases: graph-based, hierarchical, and relational. Through formal definitions in algebraic
and logic-based frameworks, the discussion addressed how each paradigm stores concepts, how it handles transitive
and multi-hop relationships, and how it responds to dynamic updates. The subsequent experimental evaluation,
leveraging prominent real-world datasets and a synthetic benchmark, underscored the strengths and weaknesses of
each approach.

Graph-based designs offer remarkable flexibility for modeling arbitrary relationships and excel at adjacency queries
but can accumulate excessive noise and cyclical complexity in deeper traversals. Hierarchical methods, meanwhile,
are ideally suited for stable subsumption queries and memory-efficient indexing but face difficulties when confronted
with multi-inheritance or cross-domain expansions. Relational approaches shine in settings requiring strict data
integrity and structured queries; however, they often incur significant overhead for recursive paths and major
schema revisions [76] [77] [78] [79].

A hybrid model employing a hypergraph core for complex relationships alongside a partial hierarchy for
classification demonstrates a promising middle ground. By carefully balancing the tree-based structure with multi-
entity hyperedges, it can curb transitivity errors while still accommodating lateral or emergent links. The empirical
results confirm that no single paradigm universally dominates; rather, the best solution depends on the nature of
the queries, the volatility of the data, and the scalability requirements.

Another direction involves integrating advanced indexing or GPU-accelerated algorithms to handle massive
joins and multi-hop traversals more efficiently. Traditional indexing structures, such as B-trees and hash tables,
often struggle to maintain efficiency in large-scale commonsense knowledge bases (CSKBs) due to their inherently
high dimensionality and the need for rapid traversal across complex relational structures. GPU-accelerated graph
processing frameworks have demonstrated significant improvements in query efficiency by parallelizing node
expansions and edge traversals, allowing for near real-time inference across vast CSKBs. These methods leverage
highly parallel architectures to distribute workloads, reducing latency in knowledge retrieval and inference.

Beyond classical acceleration, novel computational paradigms such as quantum computing and annealing-based
optimization are emerging as potential solutions for scaling CSKB operations. Quantum-inspired optimization
techniques, including simulated annealing and quantum annealers, have shown promise in minimizing search
spaces for hypergraph representations of knowledge bases. Since CSKBs often contain redundant or overlapping
information, determining an optimal subgraph that retains core commonsense reasoning capabilities while minimizing
extraneous paths remains an open problem. Quantum computing, by exploiting superposition and entanglement,
could theoretically provide exponential speedups in performing certain types of inference, particularly when resolving
ambiguities in multi-relational commonsense queries. While these approaches remain largely experimental, continued
advancements in quantum hardware and algorithmic design may render them practical for next-generation knowledge
retrieval and reasoning [80] [81] [82] [83].

Another key challenge in designing scalable and expressive CSKBs lies in handling knowledge updates. Unlike
static knowledge repositories, commonsense reasoning requires continuous adaptation to new information. Events,
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cultural norms, and even linguistic expressions evolve over time, necessitating mechanisms for dynamically updating
stored knowledge without degrading retrieval performance. Incremental learning techniques provide a potential
solution, enabling CSKBs to update in real-time as new facts emerge. However, this introduces challenges related
to knowledge validation and consistency. New additions must be evaluated to ensure they do not contradict existing
knowledge, requiring sophisticated conflict resolution mechanisms. Probabilistic reasoning frameworks, such as
Bayesian networks and Markov logic networks, have been explored to introduce degrees of belief into commonsense
assertions, allowing systems to weigh the reliability of different knowledge sources dynamically [84] [85] [86].

Furthermore, hybrid reasoning systems have emerged as a means of combining structured CSKBs with
unstructured learning from text corpora. Traditional CSKBs rely on explicitly encoded facts, yet many commonsense
inferences are implicit in human communication and require extraction from natural language sources. Recent
advancements in transformer-based language models, such as BERT derivatives, have demonstrated remarkable
abilities in capturing commonsense relationships through self-supervised learning. By pretraining on massive corpora,
these models implicitly encode commonsense knowledge that can be retrieved dynamically without the need for
a predefined graph structure. The challenge, however, lies in integrating these neural models with structured
CSKBs to balance the interpretability of explicit knowledge graphs with the adaptability of language models.
Hybrid architectures typically involve neural-symbolic integration, where explicit symbolic representations inform
neural model decision-making, and neural models augment symbolic reasoning with contextualized commonsense
knowledge [87] [88].

Commonsense knowledge bases also play a crucial role in enabling AI systems to operate in multi-modal
environments. Historically, most CSKBs have been designed with textual or logical representations in mind,
limiting their applicability in tasks requiring visual, auditory, or sensorimotor understanding. However, real-world
commonsense reasoning often involves multi-modal interactions; for example, recognizing that a glass filled to
the brim with liquid cannot be tilted without spilling requires both visual perception and physical reasoning.
Recent research in multi-modal AI seeks to extend CSKBs by integrating perceptual data with structured
knowledge representations. This is accomplished through techniques such as cross-modal embeddings, where textual
commonsense assertions are mapped into the same representational space as visual or auditory features. Such an
approach enables AI models to reason about concepts that are not only linguistically expressed but also physically
observed, expanding the scope of commonsense inference beyond purely textual descriptions [89] [90]. Another
frontier in CSKB research involves personalization and contextual adaptation. Human commonsense reasoning
is highly dependent on individual experiences, cultural backgrounds, and situational contexts. A single CSKB,
no matter how extensive, cannot fully capture the variability of commonsense across different populations and
scenarios. This has led to research into adaptive knowledge bases, where commonsense reasoning dynamically
adjusts based on user interactions and contextual cues. Reinforcement learning and meta-learning techniques have
been explored as potential methods for enabling CSKBs to specialize over time, learning from user feedback and
evolving their knowledge representations accordingly. For instance, a conversational AI system deployed in different
cultural settings may need to refine its understanding of social norms, greetings, or etiquette to provide contextually
appropriate responses. Adaptive CSKBs allow AI systems to personalize their commonsense reasoning, tailoring
responses to the nuances of individual users and environments.

Despite these advancements, significant challenges remain in ensuring the robustness and reliability of
commonsense knowledge integration. One persistent issue is the problem of hallucination in neural models,
where language models generate plausible-sounding but factually incorrect commonsense inferences. Unlike
structured CSKBs, which rely on explicitly stored knowledge, neural models generate responses based on statistical
associations, leading to the risk of spurious or inconsistent reasoning. Techniques such as retrieval-augmented
generation (RAG) have been proposed to mitigate this issue by allowing language models to ground their outputs
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in external knowledge sources, ensuring that commonsense inferences are verifiable and consistent. However, striking
the right balance between knowledge retrieval and generative adaptability remains an open research challenge.

Another concern is the ethical dimension of commonsense knowledge representation. CSKBs inherently encode
human biases, as they are constructed from human-provided data. If left uncorrected, these biases can propagate
through AI applications, leading to unfair or prejudicial outcomes. For example, commonsense assertions related
to gender roles, socioeconomic assumptions, or cultural norms may reinforce stereotypes if not carefully curated.
Bias mitigation in CSKBs involves both proactive auditing during knowledge acquisition and dynamic correction
mechanisms that adjust knowledge representations based on fairness constraints. Algorithmic fairness techniques,
such as adversarial debiasing and counterfactual reasoning, are being explored to detect and correct biases in
commonsense reasoning models. Nevertheless, ensuring an equitable representation of commonsense knowledge
across diverse global contexts remains an ongoing challenge that requires interdisciplinary collaboration between AI
researchers, ethicists, and social scientists.

As CSKBs become increasingly integral to AI decision-making, their deployment in high-stakes applications raises
additional considerations related to explainability and trust. Unlike structured knowledge graphs, which provide
transparent reasoning chains, neural-enhanced CSKBs often rely on opaque model architectures that obscure how
conclusions are reached. This lack of explainability poses risks in domains such as healthcare, law, and autonomous
decision-making, where commonsense-based inferences directly impact real-world outcomes. Explainable AI (XAI)
techniques are thus being incorporated into CSKB architectures to improve interpretability. Methods such as
attention visualization, rule extraction from neural models, and hybrid neuro-symbolic explanations provide insights
into why a particular commonsense inference was made. Ensuring that AI systems can justify their commonsense
reasoning in human-interpretable ways is crucial for fostering trust and accountability in AI-driven applications.
The convergence of structured symbolic reasoning, deep learning, and real-world sensory perception represents the
next step in creating AI systems capable of human-like commonsense understanding. As AI continues to permeate
everyday life, the ability to integrate, update, and apply commonsense knowledge flexibly and responsibly will
remain a cornerstone of intelligent system design. Continued innovation in indexing strategies, hybrid reasoning
architectures, and ethical safeguards will be necessary to ensure that CSKBs fulfill their potential in enabling truly
intelligent and context-aware AI systems.
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