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Uncertainty Quantification in Machine Learning Models for
Additive Manufacturing: A Bayesian Approach to Enhancing
Model Robustness and Trustworthiness

Wei Zhanga, Hao Linb

Abstract: Machine learning approaches have become increasingly prevalent in the optimization and
control of additive manufacturing processes over the past decade. Despite their widespread adoption,
quantifying uncertainty in these models remains a significant challenge for ensuring reliable predictions in
critical manufacturing applications. This paper presents a comprehensive Bayesian framework for quantifying
uncertainty in machine learning models specifically tailored for additive manufacturing processes. We develop
a hierarchical probabilistic approach that captures both aleatoric uncertainty arising from inherent process
variability and epistemic uncertainty stemming from model limitations and data scarcity. Our methodology
integrates Gaussian process regression with Markov Chain Monte Carlo methods to provide robust uncertainty
estimates across diverse additive manufacturing scenarios. Experimental validation on laser powder bed
fusion processes demonstrates that our approach reduces prediction error by 37% compared to deterministic
methods while providing well-calibrated uncertainty bounds. Furthermore, the proposed framework enables
adaptive sampling strategies that optimize material property predictions with 42% fewer experiments. This
work establishes a foundation for uncertainty-aware decision-making in additive manufacturing, enhancing
process reliability and accelerating qualification procedures for critical components.
Copyright © Morphpublishing Ltd.

1. Introduction

The widespread adoption of AM in high-consequence applications remains hindered by challenges in ensuring
consistent part quality and reliable performance prediction. The complex, multi-scale physical phenomena governing
AM processes create significant variability in material properties and geometric accuracy, making deterministic
prediction models insufficient for critical applications.
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Machine learning (ML) approaches have demonstrated considerable promise in addressing these challenges by
capturing complex process-structure-property relationships without requiring complete physical models. Recent
advances in deep learning, reinforcement learning, and Bayesian optimization have accelerated process parameter
optimization and real-time control in various AM processes. Nevertheless, a critical limitation remains: most ML
implementations in AM fail to adequately quantify prediction uncertainty, which is essential for risk assessment and
certification in high-consequence applications.

Uncertainty in AM manifests through multiple mechanisms, including inherent process stochasticity, measurement
noise, model form errors, and limited training data. Traditional ML approaches typically provide point estimates
without confidence intervals, leading to potentially dangerous overconfidence in regions of sparse data or novel
process conditions. This limitation becomes particularly problematic when ML models are deployed for quality
prediction in safety-critical components, where understanding prediction reliability is as important as the prediction
itself.

The field of uncertainty quantification (UQ) provides formal mathematical frameworks for characterizing,
propagating, and reducing uncertainties in computational models. Bayesian approaches to UQ have gained traction
in various scientific domains for their ability to coherently update beliefs in light of new evidence while maintaining
principled representations of uncertainty. However, the application of rigorous UQ methodologies to ML-based AM
models remains nascent, with significant gaps in methodology and practical implementation.

This paper addresses these gaps by developing a comprehensive Bayesian framework for uncertainty quantification
in ML models for additive manufacturing [1]. We focus specifically on melt pool modeling in laser powder bed fusion
(L-PBF) processes, where accurate prediction of thermal history directly impacts microstructure formation and
resultant mechanical properties. Our approach distinguishes between aleatoric uncertainty (irreducible randomness
in the physical process) and epistemic uncertainty (reducible uncertainty due to limited knowledge or data), providing
targeted strategies for uncertainty reduction and experimental design.

The primary contributions of this work include: (1) a hierarchical Bayesian framework that integrates physical
constraints with data-driven learning; (2) a novel method for calibrating model uncertainty through multi-fidelity
experimental data fusion; (3) adaptive experimental design strategies that efficiently reduce uncertainty in regions
of interest; and (4) comprehensive validation against experimental datasets across multiple materials and process
conditions. The proposed framework not only improves prediction accuracy but also enables risk-informed decision-
making through well-calibrated uncertainty estimates. [2]

The remainder of this paper is structured as follows: Section 2 reviews relevant literature on uncertainty
quantification and machine learning in additive manufacturing. Section 3 presents our Bayesian framework for
uncertainty quantification. Section 4 details the mathematical formulation of our approach, including Gaussian
process models and computational implementation. Section 5 describes the experimental methodology used for
model validation [3]. Section 6 presents results and discussion, followed by conclusions and future directions in
Section 7.

2. Background and Related Work

The intersection of machine learning and additive manufacturing has evolved rapidly in recent years, with applications
spanning process monitoring, defect detection, parameter optimization, and microstructure prediction. Early
applications of ML in AM focused primarily on supervised learning approaches, where models were trained to
predict process outcomes from input parameters. These approaches typically employed neural networks, support
vector machines, or random forests trained on experimental datasets. [4] [5]
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Process modeling in AM presents unique challenges due to the complex physical phenomena involved, including
powder spreading dynamics, laser-material interactions, rapid solidification, and thermal cycling. These processes
span multiple length and time scales, from nanoscale nucleation events to part-level residual stress development.
Traditional physics-based models, while mechanistically sound, often become computationally intractable when
attempting to capture these multi-scale interactions. This computational challenge has motivated the development
of surrogate models using machine learning techniques, which aim to approximate the input-output relationships
of physics-based models at reduced computational cost. [6]

However, the use of purely data-driven approaches in AM modeling introduces significant epistemic uncertainty,
particularly when extrapolating beyond the training data domain. Several researchers have attempted to address
this limitation through physics-informed machine learning, where known physical constraints are incorporated
into model architectures or loss functions. Physics-informed neural networks have shown particular promise by
enforcing conservation laws and boundary conditions within model training, thereby improving model accuracy and
generalizability with limited data.

The quantification of uncertainty in AM models remains relatively underexplored compared to point prediction
methods [7]. Early work in this area focused primarily on parametric uncertainty analysis, where uncertainties in
input parameters were propagated through deterministic models to estimate output variability. While valuable, these
approaches fail to capture model form uncertainty, which often dominates in complex AM processes where perfect
physical models are unavailable.

Bayesian approaches to uncertainty quantification have emerged as a promising alternative for AM modeling.
Bayesian neural networks, which place probability distributions over model weights, have been applied to melt
pool prediction and porosity detection, providing prediction intervals alongside point estimates. Similarly, Gaussian
process regression has found application in AM for its natural uncertainty quantification capabilities and ability to
incorporate prior physical knowledge through kernel design. [8]

Multi-fidelity modeling approaches have also gained traction in AM, where high-fidelity experimental data is
supplemented with lower-fidelity simulation data to improve prediction accuracy while maintaining uncertainty
awareness. These approaches typically employ hierarchical models that capture correlations between fidelity levels,
enabling efficient knowledge transfer. Kennedy and O’Hagan’s pioneering work on Bayesian calibration has inspired
several AM-specific adaptations, where model parameters are calibrated against experimental data while accounting
for model inadequacy.

Active learning and Bayesian optimization have demonstrated particular promise for efficient experimental design
in AM, where the high cost of experiments necessitates intelligent sampling strategies [9]. These approaches leverage
uncertainty estimates to identify high-information experiments that efficiently reduce prediction uncertainty. Recent
work has demonstrated substantial reductions in required experimental iterations for process optimization through
uncertainty-guided sampling.

Despite these advances, several key challenges remain in uncertainty quantification for AM modeling. First, most
existing approaches focus on either aleatoric or epistemic uncertainty, rarely addressing both simultaneously within
a unified framework [10]. Second, the validation of uncertainty estimates in AM models remains limited, with few
studies assessing calibration quality or decision-making utility. Third, the computational expense of rigorous UQ
methods has limited their application to realistic AM problems with high-dimensional input spaces and complex
output responses.

This paper addresses these limitations by developing a comprehensive Bayesian framework that simultaneously
accounts for multiple uncertainty sources while maintaining computational tractability for practical AM applications.
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By integrating physical constraints with data-driven learning and employing multi-fidelity data fusion, our approach
provides well-calibrated uncertainty estimates that support risk-informed decision-making in AM process design.
[11]

3. Bayesian Framework for Uncertainty Quantification

Our uncertainty quantification framework adopts a Bayesian perspective, treating all unknown parameters as
random variables with associated probability distributions. This approach provides a natural mechanism for updating
knowledge as new data becomes available while maintaining a comprehensive representation of uncertainty
throughout the modeling process. The framework consists of four primary components: (1) hierarchical model
structure, (2) uncertainty decomposition, (3) prior specification, and (4) posterior computation.

The hierarchical model structure captures relationships between process parameters, melt pool characteristics,
microstructure formation, and resultant material properties [12]. Each level of the hierarchy represents a distinct
physical process with associated uncertainties. At the lowest level, process parameters such as laser power, scan
speed, and layer thickness serve as controlled inputs. These parameters influence melt pool dynamics, characterized
by dimensions, temperature gradients, and cooling rates. Melt pool characteristics, in turn, determine microstructure
formation, including grain size, texture, and phase composition [13]. Finally, microstructure determines material
properties such as strength, ductility, and fatigue performance.

By structuring the model hierarchically, we can incorporate domain knowledge at each level while allowing
uncertainty to propagate through the system. This approach enables the identification of uncertainty sources
and targeted data collection for uncertainty reduction. Furthermore, the hierarchical structure facilitates transfer
learning between different materials and machine configurations by separating material-specific parameters from
process-specific parameters. [14]

Uncertainty in AM processes can be decomposed into aleatoric and epistemic components, each requiring different
treatment within the Bayesian framework. Aleatoric uncertainty represents inherent process randomness that
cannot be reduced through additional data collection. In AM, sources of aleatoric uncertainty include powder size
distribution variability, random fluctuations in laser power delivery, and stochastic nature of solidification nucleation.
We model aleatoric uncertainty using heteroscedastic noise terms with input-dependent variance. [15]

Epistemic uncertainty represents knowledge gaps that can be reduced through additional data or improved
modeling. Sources of epistemic uncertainty in AM modeling include limited training data, simplified model forms,
and measurement errors. We capture epistemic uncertainty through prior distributions over model parameters, with
variance reflecting confidence in prior knowledge. As additional data becomes available, these priors are updated to
posterior distributions with reduced variance, reflecting increased knowledge [16].

Prior specification represents a critical component of our Bayesian framework, encoding physical constraints
and domain knowledge [17]. For Gaussian process models, priors are specified through kernel selection and
hyperparameter distributions. We employ composite kernels that combine multiple basis functions to capture
relevant physical behaviors. For instance, periodic kernels capture thermal cycling effects, while Matérn kernels
represent spatial correlation in microstructure formation. Hyperpriors on length scales and output scales are selected
based on physical considerations, such as characteristic thermal diffusion lengths and expected property ranges.
[18]

For neural network components, we employ functional priors rather than parameter priors, specifying distributions
over function outputs rather than weights. This approach enables more intuitive prior specification based on physical

Copyright © Morphpublishing Ltd. 4 Morphpublishing , 1–19
Published in CURRENT ISSUE



Morphpublishing

constraints, such as monotonicity relationships between process parameters and outputs. We implement these
functional priors through virtual observables—synthetic data points generated from physical models or theoretical
bounds.

Posterior computation presents significant challenges in complex AM models with high-dimensional parameter
spaces [19]. We employ a combination of sampling-based and variational inference methods, selected based on model
complexity and computational constraints. For moderate-dimensional problems, we use Hamiltonian Monte Carlo
(HMC) with adaptive step sizes to efficiently explore posterior distributions while maintaining detailed uncertainty
representation. For higher-dimensional problems, we employ stochastic variational inference with normalizing flows
to approximate complex posterior geometries while maintaining computational tractability.

To address computational challenges in posterior predictive distribution computation, we employ ensemble
methods that combine multiple model instances sampled from the posterior [20]. This approach provides
computationally efficient uncertainty estimates that account for both parameter uncertainty and model inadequacy.
For real-time applications requiring rapid uncertainty estimation, we implement amortized inference techniques that
learn mappings from data to approximate posterior distributions, enabling fast uncertainty quantification during
process monitoring.

The proposed Bayesian framework provides several advantages over traditional deterministic approaches. First,
it naturally accommodates multi-fidelity data fusion, allowing integration of sparse experimental measurements
with abundant simulation results [21]. Second, it provides well-calibrated uncertainty estimates that support risk-
informed decision-making in process design. Third, it enables adaptive experimental design through acquisition
functions that balance exploration and exploitation based on prediction uncertainty. Fourth, it accommodates non-
stationary behavior common in AM processes through input-dependent noise models and locally adaptive kernel
parameters.

This comprehensive treatment of uncertainty in AM modeling lays the foundation for subsequent mathematical
development and computational implementation described in the following section. [22]

4. Advanced Uncertainty Quantification Models

This section presents the mathematical formulation of our Bayesian uncertainty quantification approach, with
particular emphasis on Gaussian process models and their application to additive manufacturing processes. We
develop the theoretical underpinnings necessary for rigorous uncertainty propagation through complex process-
structure-property relationships while maintaining computational tractability.

Let x ∈ Rd represent the vector of process parameters, including laser power P , scan speed v , hatch spacing h,
and layer thickness t. The process output of interest y ∈ R may represent a melt pool characteristic, microstructural
feature, or mechanical property. The true process response function f : Rd → Rmaps process parameters to outputs
but is unknown and can only be observed through noisy measurements.

We model the relationship between inputs and outputs as:

y = f (x) + ϵ(x)

where ϵ(x) represents heteroscedastic noise with variance σ2(x) that may depend on the input location. This
formulation captures both the deterministic process response and stochastic variability inherent to AM processes.
[23]
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In the Bayesian paradigm, we place a prior distribution over the unknown function f . Specifically, we model f as
a realization of a Gaussian process:

f ∼ GP(m(x), k(x, x′))

where m(x) represents the mean function encoding prior knowledge about the expected response, and k(x, x′)
is the covariance kernel function that determines the smoothness and correlation structure of the process.

For AM applications, we construct physically-informed mean functions that incorporate theoretical relationships
when available. For instance, when modeling melt pool depth d as a function of laser power P and scan speed v ,
we use the Rosenthal solution for a moving point heat source as a mean function: [24]

m(x) = αP
πkv exp

(
− v2κ r

)
where α is absorptivity, k is thermal conductivity, κ is thermal diffusivity, and r is the radial distance from the heat

source. This physics-based mean function provides a reasonable first approximation, while the Gaussian process
captures deviations due to physical effects not included in the simplified model.

The covariance kernel function determines the correlation structure of the process response across the parameter
space. We employ a composite kernel structure that combines multiple basis kernels to capture relevant physical
behaviors: [25]

k(x, x′) = kse(x, x
′) + kper(x, x

′) + klin(x, x
′)

The squared exponential kernel kse captures smooth variations in the response:

kse(x, x
′) = σ2f exp

(
− 12

∑d
i=1

(xi−x ′i )
2

l2i

)
where σ2f is the signal variance and li are length scales corresponding to each input dimension. These length

scales control the rate at which the response varies with each parameter and are learned during model training.

The periodic kernel kper captures cyclic variations often observed in layer-by-layer building processes:

kper(x, x
′) = σ2p exp

(
− 2 sin

2(π|xt−x ′t |/p)
l2p

)
where xt represents the layer thickness dimension, p is the period corresponding to thermal cycling frequency,

and lp is the length scale controlling smoothness of periodic variations.

The linear kernel klin captures global trends in the response:

klin(x, x
′) = σ2l (x

TΣx′)

where Σ is a positive semi-definite matrix determining the correlation between input dimensions in their linear
contribution to the output.

To capture heteroscedastic noise, we model the noise variance function σ2(x) using a separate Gaussian process:

logσ2 ∼ GP(mσ(x), kσ(x, x′))

This formulation ensures positive noise variance while allowing flexible modeling of input-dependent noise
characteristics [26]. For AM processes, this captures increased variability in regions of parameter space associated
with mode transitions, such as conduction to keyhole mode welding.

Given a dataset D = {(xi , yi)}ni=1 of process parameters and corresponding measurements, the posterior
distribution over the function f is also a Gaussian process:
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f |D ∼ GP(µpost(x),Σpost(x, x
′))

with posterior mean and covariance functions:

µpost(x) = m(x) + k(x)
T (K+Σn)

−1(y −m)

Σpost(x, x
′) = k(x, x′)− k(x)T (K+Σn)−1k(x′)

where k(x) = [k(x, x1), . . . , k(x, xn)]T , K is the n × n matrix with elements Ki j = k(xi , xj), Σn is a diagonal
matrix with elements σ2(xi), y = [y1, . . . , yn]T , and m = [m(x1), . . . , m(xn)]T .

The posterior predictive distribution for a new input x∗ is Gaussian:

p(y∗|x∗,D) = N (µpost(x∗),Σpost(x∗, x∗) + σ
2(x∗))

This distribution provides both the expected prediction and associated uncertainty, decomposed into epistemic
uncertainty (captured by Σpost(x∗, x∗)) and aleatoric uncertainty (captured by σ2(x∗)).

For multi-fidelity modeling, we extend this formulation to accommodate data sources of varying fidelity. Let fl
represent the process response function at fidelity level l ∈ {1, . . . , L}, where l = L corresponds to the highest
fidelity (typically experimental measurements) and l = 1 to the lowest (typically coarse simulations). We model the
relationship between fidelity levels using an autoregressive structure: [27]

fl(x) = ρl−1(x)fl−1(x) + δl(x)

where ρl−1(x) is a scaling function and δl(x) is a discrepancy function capturing fidelity level differences. Both
ρl−1 and δl are modeled as Gaussian processes:

ρl−1 ∼ GP(mρ(x), kρ(x, x′)) δl ∼ GP(mδ(x), kδ(x, x′))

This formulation enables efficient knowledge transfer between fidelity levels while maintaining uncertainty
awareness.

To address computational challenges with large datasets, we employ sparse Gaussian process approximations
based on inducing points. Let Z = {zj}mj=1 represent a set of m ≪ n inducing inputs with corresponding function
values u = [f (z1), . . . , f (zm)]T . The joint distribution of function values at observed and inducing points is:[
f

u

]
∼ N

([
m

mZ

]
,

[
Knn Knm
Kmn Kmm

])
where Knm is the cross-covariance matrix between observed and inducing points. Under the inducing point

approximation, the predictive distribution becomes: [28]

p(f∗|x∗,D) ≈ N (m(x∗) + k∗mK−1mm(u−mZ), k(x∗, x∗)− k∗mK−1mmkm∗ + k∗mK−1mmΣuK−1mmkm∗)

where k∗m = [k(x∗, z1), . . . , k(x∗, zm)] and Σu is the posterior covariance of inducing point values. This
approximation reduces computational complexity from O(n3) to O(nm2), enabling scalable inference with large
datasets.

For uncertainty propagation through the process-structure-property chain, we employ nested Gaussian processes
where the output of one model serves as input to the next. Let f1 map process parameters to melt pool
characteristics, f2 map melt pool characteristics to microstructure features, and f3 map microstructure to properties:

z = f1(x) + ϵ1(x) w = f2(z) + ϵ2(z) y = f3(w) + ϵ3(w)

Each function fi is modeled as a Gaussian process with appropriate mean and covariance functions. The posterior
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predictive distribution for property y given process parameters x requires propagating uncertainty through this chain.
We employ moment matching techniques to approximate the predictive distribution: [29]

p(y |x,D) ≈ N (E[y |x],V[y |x])

where moments are computed through nested expectations:

E[y |x] = Ez|x[Ew|z[Ey |w[y |w,D3]|z,D2]]|x,D1]

V[y |x] = Ez|x[Ew|z[Vy |w[y |w,D3]|z,D2]]|x,D1] + . . .

These nested expectations are computed using either analytic approximations or Monte Carlo integration,
depending on kernel complexity and computational constraints.

For model calibration and validation, we employ Bayesian model averaging across multiple model forms, each
with different kernel structures and hyperparameters. The posterior predictive distribution becomes a mixture: [30]

p(y∗|x∗,D) =
∑M
i=1 wip(y∗|x∗,D,Mi)

whereMi represents model form i , and weights wi are computed based on model evidence:

wi =
p(D|Mi )p(Mi )∑M
j=1 p(D|Mj )p(Mj )

This Bayesian model averaging approach accounts for model form uncertainty, providing more robust predictions
in regions where different models diverge.

The mathematical framework described above provides a rigorous foundation for uncertainty quantification in
AM modeling, capturing both aleatoric and epistemic uncertainty while maintaining computational tractability for
practical applications. In the following sections, we demonstrate the application of this framework to experimental
data and evaluate its performance in predicting AM process outcomes with quantified uncertainty.

5. Experimental Methodology

To validate the uncertainty quantification framework, we conducted a comprehensive experimental campaign using
laser powder bed fusion (L-PBF) systems with varying configurations and materials [31]. This section details the
experimental setup, measurement protocols, and data collection procedures used to generate validation datasets
for model development and evaluation.

The experimental work utilized two commercial L-PBF systems: an EOS M290 and a Concept Laser M2.
The EOS M290 features a 400W Yb-fiber laser with 100m spot size, while the Concept Laser M2 employs
a 400W Yb-fiber laser with 150m spot size. Both systems operate in an inert argon atmosphere with oxygen
concentration maintained below 0.1% [32]. These two machine configurations enabled exploration of machine-to-
machine variability and testing of model transferability across different systems.

Three metal alloy powders were investigated: Ti-6Al-4V (Grade 5), Inconel 718, and AlSi10Mg. These materials
were selected to represent a range of thermal properties and solidification behaviors commonly encountered in
industrial applications. The Ti-6Al-4V powder had particle size distribution of 15-45m (D50 = 32m), the Inconel
718 powder had particle size distribution of 15-53m (D50 = 35m), and the AlSi10Mg powder had particle size
distribution of 20-63m (D50 = 43m) [33]. All powders were characterized for flowability, apparent density, and
particle morphology prior to processing.

A design of experiments (DOE) approach was employed to systematically explore the process parameter
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space while enabling uncertainty quantification. We utilized a central composite design with four primary process
parameters: laser power (P), scan speed (v), hatch spacing (h), and layer thickness (t). The parameter ranges were
selected based on preliminary experiments to span both stable processing regions and boundary conditions where
process instabilities emerge. For Ti-6Al-4V, power ranged from 150-350W, scan speed from 600-1400mm/s, hatch
spacing from 0.08-0.14mm, and layer thickness from 30-60m. [34] [35]

Beyond the structured DOE, additional experiments were conducted at randomly selected parameter
combinations to provide validation data for assessing model extrapolation capabilities. These random validation
points were concentrated in regions of high predicted uncertainty to challenge the uncertainty quantification
framework. In total, 87 parameter combinations were tested for Ti-6Al-4V, 62 for Inconel 718, and 54 for AlSi10Mg.

For each parameter combination, we fabricated standardized test specimens including 10mm cubes for
microstructural analysis, 15mm cylinders for density measurements, and ASTM E8 tensile specimens for mechanical
property evaluation [36]. Each parameter combination was repeated three times with specimens distributed
across the build platform to capture spatial variability within the build chamber. This replication enabled direct
measurement of aleatoric uncertainty associated with inherent process variability.

In-situ monitoring was employed to capture process dynamics during fabrication. A high-speed thermal camera
(FLIR A6750sc) operating at 1000Hz with 640×512 resolution monitored the melt pool thermal profile [37].
Concurrent optical monitoring using a 5MP machine vision camera captured layer-wise information at 30Hz.
Additionally, photodiode sensors measured reflected laser radiation to detect process anomalies. This multi-modal
monitoring approach generated rich datasets for correlating process signatures with resultant material states.

Post-process characterization followed standardized protocols to ensure measurement consistency [38]. Density
measurements utilized Archimedes’ principle with ethanol immersion medium and were verified using optical
microscopy of polished cross-sections with image analysis. Microstructural characterization employed a combination
of optical microscopy and scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) to
quantify grain size, orientation, and phase composition. Mechanical testing followed ASTM standards, with tensile
testing conducted at a strain rate of 10−3s−1.

Measurement uncertainty was rigorously quantified for each characterization method [39]. For density
measurements, the expanded uncertainty (k=2) was 0.15%. For grain size measurements, the expanded uncertainty
was 12% based on multiple measurements across different sample locations. For tensile properties, expanded
uncertainties were 3% for elastic modulus, 2% for yield strength, and 4% for ultimate tensile strength. These
measurement uncertainties were incorporated into the Bayesian framework as components of the observation noise
model. [40]

To support multi-fidelity modeling, we generated companion simulation datasets using both high-fidelity and low-
fidelity computational models. High-fidelity simulations employed a coupled computational fluid dynamics (CFD)
and discrete element method (DEM) approach implemented in Flow-3D to capture melt pool dynamics with phase
change and Marangoni effects. Low-fidelity simulations utilized a simplified thermal conduction model based on
the Rosenthal solution, implemented in MATLAB. These simulation results were calibrated against experimental
measurements to quantify model bias and uncertainty. [41]

Data preprocessing included outlier detection using the modified Z-score method with threshold value 3.5,
followed by robust scaling to normalize different output quantities to comparable ranges. Missing data, which
constituted less than 3% of the dataset, was handled within the Bayesian framework rather than through imputation,
as the Gaussian process formulation naturally accommodates incomplete observations.
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The experimental dataset was partitioned into training (60%), validation (20%), and testing (20%) subsets, with
stratification based on parameter combinations to ensure representative distribution across the parameter space.
The training data was used for model development, validation data for hyperparameter tuning and model selection,
and testing data for final performance evaluation [42]. This partitioning strategy ensured unbiased assessment of
predictive performance and uncertainty calibration.

The experimental methodology described above generated comprehensive datasets capturing the complex
process-structure-property relationships in additive manufacturing across multiple materials and machine
configurations. These datasets enabled rigorous validation of the uncertainty quantification framework and
assessment of its practical utility in predicting AM process outcomes with quantified confidence.

6. Results and Discussion

This section presents the results of applying our Bayesian uncertainty quantification framework to the experimental
datasets described previously [43]. We evaluate the performance of our approach in terms of prediction accuracy,
uncertainty calibration, and utility for decision-making in additive manufacturing processes.

The predictive performance of our hierarchical Bayesian framework was assessed using root mean square error
(RMSE) and coefficient of determination (R²) metrics across all three materials and multiple output quantities.
Table 1 summarizes these results for the highest fidelity models trained on the complete dataset. For Ti-6Al-4V,
our approach achieved RMSE values of 17.3m for melt pool depth, 32.8m for melt pool width, 0.12% for porosity,
and 42MPa for ultimate tensile strength. These results represent improvements of 32%, 27%, 44%, and 37%
respectively compared to deterministic neural network models trained on the same dataset [44] [45].

The superior performance of our Bayesian approach is particularly evident in regions of sparse data, where
epistemic uncertainty becomes significant. For example, when predicting mechanical properties of Inconel 718 parts
produced with laser power exceeding 300W and scan speed below 800mm/s, the deterministic models exhibited
average prediction errors of 89MPa, while our Bayesian framework reduced this to 51MPa while simultaneously
providing uncertainty bounds that contained the true values in 94% of cases.

Uncertainty decomposition into aleatoric and epistemic components provided valuable insights into the dominant
sources of prediction variability across the parameter space. Figure 1 illustrates this decomposition for melt pool
depth prediction in Ti-6Al-4V as a function of energy density [46]. At low energy densities (<50 J/mm³), epistemic
uncertainty dominates due to limited data availability and model form limitations in capturing conduction mode
melting. At moderate energy densities (50-100 J/mm³), aleatoric uncertainty becomes more prominent, reflecting
inherent process variability in the stable processing region. At high energy densities (>100 J/mm³), both uncertainty
components increase significantly, with epistemic uncertainty dominating in the keyhole regime where complex fluid
dynamics govern melt pool behavior.

The capability to distinguish between these uncertainty sources enables targeted strategies for uncertainty
reduction [47]. In regions dominated by epistemic uncertainty, additional data collection can substantially improve
prediction confidence. Conversely, in regions dominated by aleatoric uncertainty, process modifications or control
strategies may be necessary to reduce inherent variability. This distinction is particularly valuable for process
certification and qualification, where understanding the reducibility of uncertainty directly impacts qualification
requirements.

Multi-fidelity modeling demonstrated significant improvements in prediction accuracy and uncertainty
quantification compared to single-fidelity approaches [48]. By integrating experimental measurements with
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computational simulations of varying fidelity, our framework achieved a 42% reduction in experimental data
requirements while maintaining equivalent prediction accuracy. Figure 2 illustrates the posterior predictive
distributions for melt pool depth as a function of laser power and scan speed, showing narrower uncertainty bounds
when incorporating multi-fidelity data compared to experimental data alone.

The autoregressive structure of our multi-fidelity model effectively captured correlations between fidelity levels,
enabling knowledge transfer from abundant low-fidelity simulations to sparse high-fidelity experiments. The
estimated scaling functions (x) revealed interesting patterns in model biases across the parameter space [49].
For example, thermal simulations consistently underestimated melt pool dimensions at high energy densities,
with the discrepancy increasing nonlinearly with energy input. This pattern was captured by the learned scaling
function, which showed values exceeding 1.5 in the keyhole regime, indicating that experimental measurements
were substantially larger than predicted by simulations.

Uncertainty calibration analysis confirmed that our framework produces well-calibrated uncertainty estimates
across all materials and output quantities. Figure 3 shows calibration curves for melt pool depth prediction, where
the fraction of observations falling within predicted confidence intervals closely matches the theoretical fractions
[50]. The mean calibration error was 3.2% for Ti-6Al-4V, 4.7% for Inconel 718, and 5.1% for AlSi10Mg, all within
acceptable limits for engineering applications. This calibration quality is crucial for risk-informed decision-making,
where miscalibrated uncertainty estimates could lead to either overly conservative or dangerously optimistic process
boundaries.

Comparative analysis of kernel structures revealed significant performance differences across the parameter
space. The composite kernel combining squared exponential, periodic, and linear components outperformed simpler
alternatives in terms of both prediction accuracy and uncertainty calibration [51]. This performance advantage was
particularly pronounced in capturing non-stationary behavior across processing regimes. For instance, the learned
length scales in the squared exponential component showed systematic variation with energy density, with shorter
length scales in the keyhole regime reflecting the rapid variation in process outcomes with small parameter changes.

Model selection via Bayesian model averaging demonstrated improvements in robustness compared to single-
model approaches. By combining predictions from multiple model forms weighted by their evidence, the framework
mitigated the risk of model misspecification while providing more reliable uncertainty estimates [52]. The posterior
model weights revealed interesting material-dependent patterns, with more complex kernel structures receiving
higher weights for Inconel 718 compared to AlSi10Mg, reflecting the more complex process-structure-property
relationships in the nickel-based superalloy.

The sparse approximation methods employed for computational efficiency showed minimal degradation in
predictive performance while enabling scalable inference. With 200 inducing points strategically placed within the
parameter space, the sparse approximation achieved prediction accuracy within 3% of the full Gaussian process
while reducing computation time by a factor of 87. This computational efficiency enables practical application to
industrial-scale datasets generated by in-process monitoring systems. [53]

Cross-material and cross-machine transfer learning demonstrated the framework’s ability to leverage data across
different materials and equipment configurations. When trained on Ti-6Al-4V data with a small supplement of
Inconel 718 samples, the model achieved 76% of the prediction accuracy obtained from Inconel-specific training,
with appropriately wider uncertainty bounds reflecting the transfer uncertainty. Similarly, models trained on the
EOS M290 system could be transferred to the Concept Laser M2 with 68% accuracy retention, requiring only 23%
of the original data volume for adaptation.
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Adaptive experimental design guided by uncertainty estimates demonstrated significant efficiency improvements
compared to traditional design of experiments approaches. By iteratively selecting new experiments that maximize
information gain, our framework achieved target prediction confidence with 42% fewer experiments compared to
uniform sampling [54]. Figure 4 illustrates this efficiency gain for porosity prediction in AlSi10Mg, showing the rapid
reduction in prediction uncertainty with adaptively selected experiments concentrated in high-uncertainty regions.

The practical utility of the uncertainty quantification framework was demonstrated through a case study on
process window identification for a complex geometry component. Traditional approaches typically define process
windows based on point estimates of acceptable parameter combinations, leading to either overly conservative
or risky boundaries. Our approach instead defined process windows probabilistically, with contours corresponding
to different risk tolerances [55]. For a safety-critical aerospace component with stringent porosity requirements
(<0.01%), the uncertainty-aware process window was 27% smaller than the deterministic window, eliminating
parameter combinations with high uncertainty that could not reliably guarantee the required quality.

Conversely, for non-critical components with relaxed requirements, the uncertainty-aware process window was
18% larger than the deterministic window, allowing the use of parameter combinations that would have been
unnecessarily excluded by deterministic approaches. This risk-informed process window definition directly translates
to practical benefits in manufacturing flexibility and component qualification.

In-process monitoring data integration further enhanced the framework’s utility by enabling dynamic uncertainty
updating during fabrication [56]. By assimilating thermal signatures from melt pool monitoring, the framework
could update property predictions in real-time, reducing prediction uncertainty by up to 48% compared to a priori
estimates. This capability supports adaptive process control and early defect detection by continuously refining
property predictions as new data becomes available.

The propagation of uncertainty through the process-structure-property chain revealed interesting amplification
and attenuation effects. Uncertainty in melt pool dimensions showed amplification when propagated to
microstructural features, with relative uncertainty increasing by a factor of approximately 1.5 [57]. However,
uncertainty in microstructural features showed attenuation when propagated to mechanical properties, with relative
uncertainty decreasing by a factor of approximately 0.8. These effects reflect the complex nonlinear relationships
between processing, structure, and properties in additive manufacturing.

Sensitivity analysis within the Bayesian framework identified key parameters driving prediction uncertainty across
different materials and properties. For Ti-6Al-4V mechanical properties, scan speed emerged as the dominant
contributor to uncertainty, accounting for 47% of the total prediction variance [58]. For Inconel 718 microstructure,
the interaction between power and scan speed contributed 53% of the prediction uncertainty. These insights enable
targeted parameter control strategies focused on the most influential factors for specific outcomes.

The quantification of measurement uncertainty contributions revealed that for most output quantities, process
variability dominated over measurement uncertainty, accounting for 75-85% of the total observed variance. However,
for microstructural features such as grain size and texture, measurement uncertainty contributed significantly (30-
45%) to the total uncertainty budget [59]. This finding highlights the importance of improved characterization
techniques for microstructure quantification in AM process optimization.

Uncertainty propagation through thermal history revealed that transient thermal effects have substantial impacts
on prediction uncertainty for multi-layer builds. Temperature gradients and cooling rates showed high sensitivity to
small perturbations in process parameters, with uncertainty amplification through subsequent layers. This effect was
particularly pronounced for thin-walled structures, where the limited thermal mass led to greater thermal variability
and consequently higher uncertainty in mechanical properties. [60]
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Analysis of spatial variability within the build volume identified systematic patterns in prediction uncertainty.
Regions near the build plate edges showed consistently higher uncertainty due to thermal boundary effects, while
central regions exhibited more predictable behavior. This spatial mapping of uncertainty provides valuable guidance
for part placement within the build volume to minimize property variability in critical components.

Comparative analysis with other uncertainty quantification approaches demonstrated the advantages of our
Bayesian framework [61]. Traditional methods such as Monte Carlo simulation with deterministic models achieved
similar mean predictions but significantly underestimated uncertainty in sparse data regions. Meanwhile, frequentist
approaches such as bootstrapped neural networks provided reasonable uncertainty estimates but lacked the coherent
mechanism for incorporating prior knowledge and multi-fidelity data that our Bayesian framework offers.

The computational implementation of our framework demonstrated scalability to industrial datasets. Using
GPU acceleration and sparse approximation methods, the framework processed 106 data points in 3.2 hours for
model training and generated predictions with uncertainty estimates at a rate of 103 predictions per second during
inference. This performance enables practical application to large-scale manufacturing data and real-time process
monitoring. [62]

In summary, our Bayesian uncertainty quantification framework demonstrates significant advantages over
traditional deterministic approaches for additive manufacturing modeling. By providing well-calibrated uncertainty
estimates that distinguish between aleatoric and epistemic uncertainty sources, the framework enables risk-informed
decision-making, efficient experimental design, and robust process optimization. The multi-fidelity modeling
capability efficiently leverages data from different sources, while the hierarchical structure captures complex process-
structure-property relationships with quantified confidence.

7. Conclusion

This paper has presented a comprehensive Bayesian framework for uncertainty quantification in machine learning
models for additive manufacturing [63]. By integrating physical constraints with data-driven learning and employing
multi-fidelity data fusion, our approach provides well-calibrated uncertainty estimates that support risk-informed
decision-making in AM process design and qualification. The key contributions and findings from this work are
summarized below.

First, we have developed a hierarchical Bayesian modeling approach that captures the complex relationships
between process parameters, melt pool characteristics, microstructure formation, and mechanical properties in AM
processes. This hierarchical structure enables uncertainty propagation through the process-structure-property chain,
providing insights into how uncertainties amplify or attenuate across different process stages [64]. The framework
distinguishes between aleatoric uncertainty arising from inherent process variability and epistemic uncertainty
stemming from model limitations and data scarcity, enabling targeted strategies for uncertainty reduction.

Second, our multi-fidelity modeling approach efficiently integrates data from different sources, including high-
fidelity experiments, medium-fidelity detailed simulations, and low-fidelity analytical models. This approach reduces
experimental data requirements by 42% while maintaining prediction accuracy, substantially improving the efficiency
of AM process development. The autoregressive structure of our multi-fidelity model effectively captures correlations
between fidelity levels, enabling knowledge transfer from abundant low-fidelity simulations to sparse high-fidelity
experiments. [65]

Third, the Gaussian process models employed in our framework provide naturally principled uncertainty
quantification with flexible kernel structures tailored to AM phenomena. The composite kernel combining squared
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exponential, periodic, and linear components captures both smooth variations and cyclical thermal effects
characteristic of layer-by-layer building processes. The sparse approximation methods enable scalable inference
for large-scale manufacturing datasets without significant degradation in predictive performance.

Fourth, experimental validation across multiple materials and machine configurations demonstrates the
generalizability and robustness of our uncertainty quantification approach [66]. The framework achieves
improvements of 27-44% in prediction accuracy compared to deterministic methods while providing well-calibrated
uncertainty estimates with mean calibration errors below 5%. Cross-material and cross-machine transfer learning
capabilities enable efficient adaptation to new materials and equipment with minimal additional data collection.

Fifth, practical applications demonstrate the tangible benefits of uncertainty-aware modeling for AM process
development. Adaptive experimental design guided by uncertainty estimates reduces experimental requirements
by 42% compared to traditional approaches [67]. Probabilistic process window definition enables risk-informed
parameter selection tailored to specific application requirements. Real-time uncertainty updating during fabrication
supports adaptive process control and early defect detection by continuously refining property predictions as new
data becomes available.

These contributions address critical challenges in AM process modeling and qualification, where understanding
prediction reliability is essential for safety-critical applications. By providing well-calibrated uncertainty estimates,
our framework enables engineers to make informed decisions about process parameters, part placement, and quality
control strategies based on quantified risk assessments rather than deterministic predictions alone. [68]

Several important directions for future research emerge from this work. First, extending the uncertainty
quantification framework to capture microstructural heterogeneity and anisotropy could improve predictions
for complex geometries with varying thermal histories. Second, incorporating more sophisticated physics-based
constraints into the Bayesian prior could further improve model accuracy in sparse data regions while maintaining
well-calibrated uncertainty estimates. Third, developing computationally efficient methods for real-time uncertainty
quantification during process monitoring could enable closed-loop control strategies that adaptively respond to
prediction uncertainty. [69]

From a practical implementation perspective, integrating the uncertainty quantification framework with
commercial AM software and hardware systems represents an important step toward industrial adoption.
Standardized protocols for uncertainty reporting and risk assessment would facilitate communication between
designers, manufacturers, and regulatory authorities, potentially streamlining qualification procedures for critical
components.

In conclusion, the Bayesian uncertainty quantification framework presented in this paper provides a powerful
toolset for addressing the challenges of variability and reliability in additive manufacturing. By capturing both
aleatoric and epistemic uncertainty in a principled manner, the framework enables more informed decision-making
throughout the AM process chain, from design and parameter selection to in-process monitoring and quality control.
This uncertainty-aware approach represents an important step toward broader adoption of additive manufacturing
for safety-critical applications where reliability and consistency are paramount concerns. [70]
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