
Morphpublishing
Research Peer reviewed
open access academic journal

Stochastic Agent-Based Metaheuristics for Distributed Task
Allocation in Heterogeneous Robotic Swarms with Partial
Observability
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Abstract: Swarm robotic systems comprised of many relatively simple robots are often deployed in
domains where tasks appear in a spatially distributed and time varying manner. Such environments include
environmental monitoring, search and rescue operations, and warehouse logistics where the cost of centralised
planning is high and communication may be unreliable. In these settings, heterogeneity in robot sensing,
mobility, and manipulation capabilities complicates task allocation because agents cannot be treated as
interchangeable. At the same time, local sensing and limited-range communication imply that individual
robots operate under partial observability, with only fragmentary and delayed information about the global task
configuration and the states of peers. This combination of heterogeneity, decentralisation, and uncertainty
motivates distributed decision mechanisms that are lightweight, robust to missing information, and able to
adapt online to evolving workloads. This paper develops and studies stochastic agent-based metaheuristics
for distributed task allocation in heterogeneous robotic swarms under partial observability. Each robot is
modeled as an autonomous decision maker executing a probabilistic policy that balances local exploitative
allocation decisions with exploratory behavior guided by metaheuristic principles. The proposed framework
couples a linear assignment relaxation, used as an abstract global benchmark, with local learning rules that
update task preferences using noisy observations and intermittent communication. Analytical arguments
and extensive simulated scenarios are used to examine how the algorithmic parameters shape convergence
speed, load balancing, and resilience to sensing limitations. Emphasis is placed on understanding trade-
offs between exploration, communication density, and heterogeneity-aware coordination rules, rather than
on demonstrating a single optimal design. The results illustrate characteristic behaviors of stochastic
metaheuristics in partially observed swarm environments and highlight design considerations for future task
allocation mechanisms in heterogeneous multi-robot systems.
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1. Introduction

Distributed task allocation in robotic swarms arises whenever multiple autonomous robots must decide which tasks
to service, when to commit to tasks, and how to coordinate their movements to avoid redundant effort [1, 2]. In
many application domains, tasks are spatially distributed and appear asynchronously, robots differ in their sensing,
actuation, and energy resources, and global communication is constrained. Classic formulations based on centralised
optimization can be computationally demanding and require complete and timely information about system state,
which is seldom available in practice. For these reasons, agent-based approaches, in which each robot follows local
decision rules and coordination emerges through interaction, are of sustained interest [3, 4].

Heterogeneous swarms add an additional dimension to the problem because robots cannot be considered fungible.
Aerial robots differ from ground robots in range and speed, manipulators differ in payload and precision, and sensing
payloads vary in modality and resolution. Task requirements may demand specific combinations of these capabilities,
meaning that only certain subsets of robots can service particular tasks. Even when a task is feasible for multiple
robots, the associated cost, completion time, and risk can differ substantially [5]. Any realistic task allocation
mechanism must therefore account for heterogeneity in order to avoid assigning tasks to poorly matched robots or
underutilizing specialized agents.

Global swarm objective

Distributed task set

Robot type A Robot type B Robot type C

Local workspace E1 Local workspace E2 Local workspace E3

nois
y view filtered

Local stochastic
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Figure 1. Distributed swarm architecture: a heterogeneous set of robots observes only fragments of the global task pool
and nearby environment regions, exchanges limited messages over a sparse communication graph, and runs local stochastic
metaheuristics aligned with a shared swarm-level objective.

Partial observability further complicates coordination. Robots typically possess only local sensing, such as a
limited-range lidar or camera, and communicate with neighbors within a modest radius or through intermittent
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Figure 2. Internal architecture of a single agent: noisy local observations are fused into a compact belief state that feeds a
stochastic metaheuristic engine, which samples task-selection policies, drives motion and execution, and is continually shaped
by local memory and messages from neighboring robots.
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Figure 3. Stochastic metaheuristic search in the space of swarm task allocations: the agent samples local perturbations around
its current allocation, occasionally accepts worse candidates according to a temperature-controlled rule, and converges to
locally efficient allocations that balance exploration and exploitation.

multi-hop links. As a consequence, each robot has access to only a noisy, delayed, and incomplete view of the global
task configuration and of other robots’ intentions [6]. Classical formulations such as centralized linear assignment
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Figure 4. Example heterogeneous communication topology: aerial and ground robots form a layered network where a relay
node aggregates information, maintains a local task cache, and disseminates compact summaries that guide decentralized
task allocation without requiring a global broadcast channel.
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Figure 5. End-to-end distributed task allocation process over time: agents iterate through local sensing, stochastic
negotiation, task selection, execution, and online adaptation, while swarm-level metrics such as load balance, task reward,
and robustness are monitored to assess performance under partial observability.

or mixed-integer programming assume full knowledge of task locations, robot states, and system constraints. When
observability is partial, these models become aspirational benchmarks rather than implementable controllers, and
their solutions may be difficult to approximate using only local information.
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Table 1. Heterogeneous swarm configurations used in simulation experiments

Configuration # Robots Type Distribution (Scout/Worker/Carrier) Max Velocity (m/s)

C1 Compact 50 40% / 40% / 20% 0.5
C2 Balanced 100 30% / 50% / 20% 0.6
C3 Worker-Heavy 150 20% / 60% / 20% 0.6
C4 Carrier-Enhanced 150 25% / 35% / 40% 0.55
C5 Large-Scale 250 30% / 40% / 30% 0.7

Table 2. Task classes and resource requirements in the benchmark environments

Task Class Required Capabilities Nominal Duration (s) Energy Cost (units)

Exploration Long-range sensing 60 15
Inspection High-resolution perception 90 20
Transport-Light Grasping, low payload 120 25
Transport-Heavy Grasping, high payload 180 40
Repair Manipulation, cooperation 210 45

Table 3. Compared task allocation strategies and key algorithmic features

Method Search Paradigm Communication Pattern Adaptation Mechanism

Centralized ILP Exact optimization Global broadcast Static parameters
Market-Based Auction Utility-driven search Local bidding Price updates
PSO-Swarm Stochastic sampling Neighborhood sharing Velocity updates
ABM-Stochastic Agent-based metaheuristic Opportunistic gossip Online reweighting
ABM-Hybrid Agent-based + local ILP Gossip + consensus Dual-level tuning

Table 4. Partial observability and communication settings across evaluation scenarios

Scenario Sensing Radius (m) Comm Radius (m) Obstacle Density (% area)

S1 Mild 8 25 5
S2 Moderate 6 20 10
S3 Severe 4 15 15
S4 Extreme 3 12 20

In this context, stochastic agent-based metaheuristics provide a flexible design space. Instead of attempting to
compute a deterministic, globally optimal allocation, robots maintain probabilistic preferences over tasks and update
these preferences based on local experience, limited communication, and stochastic exploration [7]. Metaheuristics
such as simulated annealing, population-based search, and reinforcement learning-inspired update rules can be
embedded into the behavior of individual robots. The resulting swarm effectively performs a distributed stochastic
search over the space of possible allocations, with robots adjusting their policies in response to observed rewards
and conflicts.
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Table 5. Task allocation performance over 50 runs (Scenario S2, configuration C3)

Method Completion Rate (%) Makespan (s, ↓) Load Imbalance (%, ↓)

Centralized ILP 99.2 ± 0.4 410 ± 18 9.8 ± 1.2
Market-Based Auction 96.5 ± 1.1 452 ± 23 12.4 ± 1.7
PSO-Swarm 94.1 ± 1.9 468 ± 27 14.7 ± 2.0
ABM-Stochastic 98.3 ± 0.7 423 ± 16 8.1 ± 1.0
ABM-Hybrid 99.0 ± 0.5 399 ± 14 7.6 ± 0.9

Table 6. Robustness to robot failures in Scenario S3 (150 robots, 200 tasks)

Failure Rate Method Completion Rate (%) Reallocation Overhead (s)

0% ABM-Stochastic 97.8 ± 0.8 0
10% ABM-Stochastic 95.1 ± 1.4 38 ± 7
20% ABM-Stochastic 91.7 ± 2.0 71 ± 9
30% ABM-Stochastic 87.3 ± 2.6 104 ± 12

Table 7. Scalability of the proposed method with increasing swarm size

# Robots # Tasks Average Makespan (s) Planning Time per Agent (ms)

50 80 265 ± 11 1.8 ± 0.3
100 160 341 ± 15 2.1 ± 0.4
150 240 402 ± 19 2.4 ± 0.5
200 320 458 ± 22 2.9 ± 0.6
250 400 517 ± 28 3.3 ± 0.7

Table 8. Ablation of stochastic components in the agent-based metaheuristic

Variant Randomized Exploration Probabilistic Bidding Completion Rate (%)

Full model ✓ ✓ 98.3 ± 0.7
No exploration noise – ✓ 95.4 ± 1.3
Deterministic bids ✓ – 94.7 ± 1.5
Deterministic both – – 92.9 ± 1.8

This paper considers a class of such metaheuristics for distributed task allocation in heterogeneous robotic swarms
with partial observability. The emphasis is on bridging the gap between a global optimization perspective, grounded
in linear models of task assignment, and local agent-based rules that can be implemented in a decentralized manner
[8]. A global linear assignment formulation is introduced as a conceptual reference that describes the ideal allocation
under full observability. Each robot then maintains local estimates of task utilities and uses stochastic policies to
select tasks and communicate information to neighbors. Heterogeneity is modeled through capability vectors and
task requirement vectors, which shape the structure of feasible allocations and the reward functions perceived by
different robots [9].
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The analysis focuses on three interrelated aspects. First, the relationship between the proposed agent-based rules
and underlying linear assignment models is examined, highlighting how global objectives can be approximated using
local updates. Second, the effect of partial observability on convergence and performance is studied, including how
errors in task detection and communication delays propagate through the distributed decision process. Third, the role
of stochasticity in mitigating local minima and promoting flexible adaptation is discussed, with attention to annealing
schedules and exploration rates that balance convergence and responsiveness [10]. By exploring these aspects in
a unified framework, the paper aims to contribute to a systematic understanding of stochastic metaheuristic task
allocation in heterogeneous swarms.

The remainder of the paper is organized around a progression from modeling to algorithm design and analysis. A
system model and problem formulation are first developed in terms of robots, tasks, capabilities, and communication
structures. Stochastic agent-based metaheuristics are then described, including local decision rules, information
exchange schemes, and learning update equations [11]. The impact of partial observability is subsequently examined
through analytical reasoning and qualitative discussion of regime-dependent behaviors. The paper concludes with
a summary of the main findings and an outline of directions for future investigation, particularly concerning the
interaction between communication topology, sensing limitations, and heterogeneity-aware coordination.

2. System Model and Problem Formulation

Consider a set of robots denoted by
R = {1, 2, . . . , n}

and a set of tasks denoted by [12]
T = {1, 2, . . . , m}.

The robots operate in a workspace represented by a graph

G = (V, E),

where vertices in V correspond to spatial locations or regions and edges in E capture traversable paths. Each robot
occupies a vertex and moves along edges subject to kinematic and dynamic constraints [13]. Tasks are associated
with vertices and are characterized by their location, type, and processing requirements.

Heterogeneity is modeled by associating each robot i with a capability vector

ci ∈ Rd ,

whose components quantify sensing, actuation, payload, or other attributes [14]. Similarly, each task j is associated
with a requirement vector

rj ∈ Rd ,

where each component indicates the minimum capability level required for that attribute. A robot i is said to be
feasible for task j if

ci ⪰ rj , [15]

where ⪰ denotes componentwise inequality. The set of feasible robot-task pairs is then

F = {(i , j) ∈ R× T : ci ⪰ rj}.
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To relate the agent-based metaheuristics to a global optimization perspective, consider a static reference problem
in which all tasks and robot states are known centrally. Define binary decision variables [16]

xi j ∈ {0, 1}

indicating whether robot i is assigned to task j . Let Ci j denote the cost incurred when robot i services task j , which
may combine travel distance, energy expenditure, and processing time. A canonical linear assignment relaxation
can be written as

min
x

∑
i∈R

∑
j∈T
Ci jxi j

subject to ∑
j∈T
xi j ≤ 1, ∀i ∈ R,

∑
i∈R
xi j ≤ κj , ∀j ∈ T ,

xi j = 0 if (i , j) /∈ F .

Here κj denotes the maximum number of robots that may be allocated to task j [17]. This model captures resource-
limited allocation and heterogeneity through the feasibility set F . It serves as an ideal benchmark that cannot be
directly solved by individual robots under partial observability.

The above static formulation does not account for the temporal nature of task appearances and completions.
To represent dynamics, consider discrete time steps

t ∈ {0, 1, 2, . . .}.

At each time, tasks may appear or expire, and robots transition between vertices [18]. Let si(t) ∈ V denote the
location of robot i at time t, and let τj(t) denote the remaining workload of task j . When robot i works on task j
during a time step, the workload is reduced according to a processing rate that depends on both the robot capability
and the task requirement. For example, one may define a linear processing model

τj(t + 1) = [19] max{0, τj(t)−
∑
i∈R
γi jui j(t)},

where ui j(t) is the fraction of time step t that robot i devotes to task j and γi j is an effective processing rate.
Under a discrete allocation, one may restrict ui j(t) to be either zero or one with at most one active task per robot
per step.

Partial observability is captured by introducing local observation sets [20]. Each robot i senses its environment
within a radius that may depend on its sensing capabilities and the environment. Denote by Oi(t) the set of tasks
observable by robot i at time t. This set consists of tasks located within a certain graph distance from si(t) and
may be subject to detection probabilities and false alarms. Similarly, robot i communicates with neighbors defined
by a communication graph

Gc(t) = (R, Ec(t)),

where Ec(t) contains undirected edges representing bidirectional communication links. This communication graph
may change over time as robots move [21].

The global system state includes the positions of all robots, the workloads and locations of all tasks, and possibly
additional variables such as robot energy reserves. Under partial observability, robot i has access only to its local
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state, the tasks in Oi(t), and information received from neighbors. To formalize this, one can define the observation
of robot i at time t as

oi(t) =
(
si(t), [22]Oi(t),Mi(t)

)
,

where Mi(t) denotes messages received from neighboring robots. The evolution of the system can be modeled
as a stochastic process with transition probabilities influenced by robot actions and exogenous task arrivals. The
decision problem faced by each robot is then a partially observable stochastic control problem.

Although a full multi-robot partially observable Markov decision process model would be extremely high
dimensional, it is useful to think in those terms when designing local policies [23]. In principle, one could associate
with each robot a belief over aspects of the global state and derive policies using stochastic dynamic programming.
In practice, exact computations are intractable, motivating approximate methods in which robots maintain low-
dimensional summaries of information, such as estimates of task utilities and congestion levels. The stochastic
agent-based metaheuristics considered in this paper operate on such summaries rather than on full belief states.

To connect the global assignment perspective with local decision making, one can interpret the cost coefficients
Ci j as encoding a notional desirability of assigning robot i to task j . Each robot seeks to estimate these desirabilities
or their surrogates using local information [24]. Let

qi j(t)

denote the local estimate maintained by robot i for the utility or negative cost of committing to task j at time t.
Because robot i cannot observe all tasks, qi j(t) is defined only for tasks in a local candidate set

Ti(t) ⊆ T ,

which may consist of tasks in Oi(t) and tasks about which information has been received through communication.
The agent-based metaheuristics determine how these utility estimates are updated and how they are translated
into stochastic decisions about which tasks to service [25].

The global performance of the swarm can be evaluated through metrics such as average task completion time,
fraction of tasks completed before deadlines, average distance traveled by robots, and load balancing across different
robot types. Many of these performance criteria can be expressed as expectations of linear functionals of the system
trajectories. For example, if Tj denotes the completion time of task j , one may consider the expected weighted sum

J = E

[26]
∑
j∈T
wjTj

 ,
where wj are nonnegative weights. The agent-based metaheuristics aim to achieve reasonably low values of such
global objective functions using only local decision rules operating under partial observability [27].

3. Stochastic Agent-Based Metaheuristics

In the metaheuristic framework considered here, each robot maintains a collection of local variables that summarize
its knowledge and preferences regarding tasks. At each time step, a robot updates these variables based on its latest
observations and information received from neighbors, then uses them to sample a task to pursue. The overall
system behavior emerges from the interaction of these stochastic local decisions and the underlying task dynamics.

A central element of the metaheuristic is a set of task utility estimates qi j(t) that robot i associates with tasks
in its local candidate set Ti(t). These estimates reflect the anticipated benefit of committing to task j in terms of
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completion reward, travel cost, and anticipated congestion [28]. The agent-based algorithm specifies how qi j(t) is
updated and how it is transformed into a probability distribution over tasks.

A common choice for mapping utilities to probabilities is a soft-max or Boltzmann selection mechanism. For
each robot i and task j ∈ Ti(t), define the probability of selecting task j at time t as

pi j(t) =
exp

(
βi(t)qi j(t)

)∑
k∈Ti (t) exp

(
[29]βi(t)qik(t)

) ,
where βi(t) is an inverse temperature parameter that controls the trade-off between exploration and exploitation.
When βi(t) is small, the probabilities are nearly uniform and the robot explores tasks broadly. As βi(t) increases,
the robot becomes more likely to select tasks with higher estimated utility [30].

The utility estimates qi j(t) are updated using local reward information and possibly information from neighbors.
Let ri j(t) denote the instantaneous reward or negative cost observed by robot i when it works on task j during
time step t. This reward may depend on travel distance incurred, progress made on the task, and congestion due
to simultaneous servicing by other robots. A simple stochastic approximation update rule is

qi j(t + 1) = (1− αi(t))qi j(t) + αi(t)ri j(t),

for the task actually selected at time t, and

qik(t + 1) = qik(t)

for tasks k ̸= j [31]. Here αi(t) is a learning rate sequence that may decrease over time. This rule implements an
exponential moving average of observed rewards.

To incorporate information from neighbors, robots can periodically exchange their utility estimates or summaries
thereof. Let Ni(t) denote the set of neighbors of robot i in the communication graph at time t. A consensus-like
update step can be written as [32]

q̃i j(t) = (1− λi(t))qi j(t) + λi(t)
∑
k∈Ni (t) qkj(t)

|Ni(t)|
,

for tasks j that appear in the union of candidate sets of robot i and its neighbors. The updated utility values are
then [33]

qi j(t + 1) = q̃i j(t)

for all relevant tasks. The coefficient λi(t) controls the influence of neighbors’ information and may depend on
communication reliability or bandwidth.

Heterogeneity is integrated into the reward structure and task candidate sets. For robot i , only tasks j in F
are considered, and the instantaneous reward is shaped by the capability vector ci and requirement vector rj . For
example, if ρi j denotes the effective rate at which robot i can process task j , and di j(t) is the travel distance from
si(t) to the location of task j , one may define a reward of the form

ri j(t) = η1ρi j − η2di j(t)− η3zj(t), [34]

where η1, η2, η3 are nonnegative coefficients and zj(t) is an estimate of congestion at task j . Congestion can be
estimated locally by counting how many robots announce an intention to work on task j or indirectly through
observations of service delays.
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The congestion term is important for avoiding over-allocation of robots to a small subset of tasks, which can
lead to inefficient behavior. A simple congestion estimate for robot i could be [35]

zj(t) =
∑
k∈Ni (t)

1{ak(t) = j},

where ak(t) denotes the task that neighbor k has selected at time t and 1{·} is the indicator function. Although
this estimate is local and potentially noisy under partial observability, it provides a mechanism for robots to respond
to local crowding [36].

The temperature parameter βi(t) can be adapted over time to implement an annealing schedule. At early stages
or when the environment changes rapidly, lower values of βi(t) promote exploration. As time progresses or as task
arrival rates stabilize, higher values shift behavior toward exploitation of high-utility tasks. A simple schedule is [37]

βi(t) = βi ,0 + κi t,

where βi ,0 is an initial inverse temperature and κi is a nonnegative slope. More elaborate schedules can make βi(t)
depend on observed variability of rewards or measures of convergence such as the entropy of the task selection
distribution.

In addition to utility-based selection, robots must decide when to release tasks and reassign themselves [38]. If
a robot finds that a selected task has been completed by others or is no longer beneficial due to congestion or
environmental changes, it should be able to abandon the task and sample a new one. This is naturally handled
by the stochastic metaheuristic: at each time step, robots probabilistically reconsider their assignments based on
updated utilities. The rate of reassignment can be influenced by the learning rate and temperature parameters,
with faster updating promoting flexibility but potentially increasing oscillations.

To provide a more explicit connection to the global linear assignment model, one can view the stochastic agent-
based mechanism as performing a distributed approximation of the assignment problem through local sampling [39].
Suppose that the utility estimates qi j(t) converge, in an average sense, to negative scaled versions of the costs Ci j .
Then the soft-max selection rule approximates a randomized assignment in which lower-cost pairs are exponentially
more likely to be chosen. The learning rule progressively refines these estimates based on observed travel and
processing outcomes, while neighbor communication serves to propagate information about task desirability through
the network.

From a metaheuristic perspective, the combination of stochastic selection, local learning, and occasional
reallocation resembles features of simulated annealing and population-based search. Robots can be thought of as
parallel search processes exploring the space of allocations, with communication implementing a form of information
sharing analogous to crossover or migration in evolutionary methods [40]. The partial observability and heterogeneity
introduce additional structure, as robots of different types explore different subsets of tasks and see different portions
of the environment.

The scalability of this approach stems from the fact that each robot maintains utility estimates only for a
relatively small number of tasks, namely those within its observation region or those advertised by neighbors. The
computational burden per robot per time step is dominated by evaluating rewards for candidate tasks, updating the
utility estimates, and sampling from the soft-max distribution [41]. All of these operations scale linearly with the
size of the local candidate set. Communication requirements are similarly local, involving the exchange of utility
estimates or summaries with neighbors. These properties make the metaheuristic amenable to large-scale swarms
where fully centralised computation is impractical.
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4. Analysis and Discussion of Partial Observability

The behavior of stochastic agent-based metaheuristics in heterogeneous swarms is substantially influenced by partial
observability [42]. The local utility estimates that drive task selection are constructed from incomplete information,
and the communication graph may not always connect robots that are servicing related tasks. Understanding these
effects is important for interpreting performance and for choosing algorithmic parameters.

A useful conceptual model treats each robot as operating in a partially observable Markov decision problem
defined on a reduced state space. Let S denote a global state space describing the positions and statuses of all
robots and tasks, and let Ai denote the action space of robot i , consisting of available motion and task selection
commands [43]. Robot i receives observations oi(t) that depend on the global state through an observation kernel.
If robot i maintained a belief bi(t) over S, the belief update could be expressed as

bi(t + 1, s
′) = ηi(oi(t + 1))[44]Oi(oi(t + 1) | s ′)

∑
s∈S
P (s ′ | s, ai(t), a−i(t))bi(t, s),

where P is the state transition kernel, Oi is the observation likelihood, a−i(t) denotes the joint actions of other
robots, and ηi is a normalization factor. In practice, such belief updates are not computed and the utility estimates
qi j(t) play the role of compressed information about the environment.

One can think of the local utility estimate for task j as a projection of the high-dimensional belief onto a scalar
value that captures expected reward for servicing that task. The stochastic approximation update [45]

qi j(t + 1) = (1− αi(t))qi j(t) + αi(t)ri j(t)

can be analyzed using standard results on stochastic approximation if the reward process is ergodic and the learning
rate satisfies appropriate conditions. Under such conditions, qi j(t)may converge in probability to a value that reflects
the long-run average reward of choosing task j from the perspective of robot i . However, partial observability and
the coupling between robots’ decisions complicate the verification of these conditions.

Partial observability affects reward signals through two primary channels [46]. First, robots may fail to detect
tasks, especially when sensing ranges are limited or occlusions occur. Second, robots may have incomplete or
outdated information about the intentions of other robots, leading to misestimation of congestion and potential
overcommitment to tasks. These effects introduce biases and increased variance in the observed rewards ri j(t),
which in turn influence the convergence of the utility estimates.

To gain insight, consider a simplified regime in which tasks are static, all robots have fixed positions, and only
task detection is subject to uncertainty. Suppose that task j lies within the nominal sensing range of robot i but
is detected at each time step with probability δi j . When the task is not detected, it is effectively absent from the
candidate set Ti(t), so the soft-max selection mechanism cannot choose it. Over many time steps, the effective
probability that i selects task j depends on both the detection probability and the soft-max probabilities conditioned
on detection [47].

If the reward associated with task j is relatively stable, the stochastic approximation process sees a subsequence
of reward observations corresponding to the times when the task is detected and selected. Under mild regularity
conditions, the estimated utility qi j(t) can still converge to a value close to the expected reward, but the convergence
is slower and more variable due to the missing observations. The main consequence is that tasks with low detection
probabilities may be persistently undervalued relative to tasks that are more easily observed, leading to allocation
biases.
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Communication among robots provides a mechanism to mitigate some of these biases. When a robot that
consistently detects a task shares its utility estimates with neighbors, robots that rarely detect the task directly
can still form reasonably accurate estimates [48]. The consensus-like update

q̃i j(t) = (1− λi(t))qi j(t) + λi(t)
∑
k∈Ni (t) qkj(t)

|Ni(t)|

tends to diffuse information about tasks through the communication graph [49]. The effectiveness of this diffusion
depends on the graph connectivity and on the relative magnitudes of learning and consensus rates. If λi(t) is too
small compared to αi(t), local reward observations dominate and information diffuses slowly. If λi(t) is too large,
robots may become overly reliant on potentially outdated neighbor information.

Heterogeneity interacts with partial observability because robots of different types may have different sensing
ranges, detection probabilities, and communication capabilities [50]. Specialized robots may be more likely to detect
certain tasks due to their sensing payloads, and may also be more capable of servicing those tasks due to their
actuation capabilities. In such cases, it can be beneficial for the metaheuristic to emphasize the propagation of task
information from specialized agents to more general agents, so that the swarm as a whole maintains awareness of
task distributions even if not all robots can perceive every task directly.

From a linear modeling perspective, partial observability effectively modifies the costs and feasibility structure of
the global assignment. A robot that cannot reliably detect a task behaves as if the cost of servicing that task were
very high or as if the task were infeasible [51]. One can formalize this by introducing effective costs

C̄i j =
Ci j
δi j
,

with the understanding that small detection probabilities inflate effective costs. The global assignment problem
with effective costs captures the long-run difficulty of coordinating robots to service tasks under sensing limitations
[52]. The distributed metaheuristic can then be interpreted as approximating an assignment with respect to these
effective costs, rather than the nominal costs.

Another important aspect of partial observability is the presence of delayed and noisy information about other
robots’ decisions. When robots communicate only intermittently, their beliefs about congestion at tasks may lag
behind reality. A robot may arrive at a task expecting low congestion based on outdated neighbor messages, only
to discover that several other robots have already committed to that task [53]. Such discrepancies can create
transient inefficiencies, but they also inject useful stochasticity into the system by preventing robots from perfectly
predicting each other’s actions.

The impact of such delays on convergence can be examined using Markov chain models of the joint allocation
state. Let X(t) denote a random variable capturing the current assignment of robots to tasks. Under the stochastic
metaheuristic, X(t) evolves as a Markov chain whose transition probabilities depend on the utility estimates and on
the observation and communication processes [54]. If the learning rates and temperatures change slowly, one can
approximate the evolution of X(t) as a quasi-static Markov chain with slowly varying parameters. Under suitable
conditions, the chain may admit a stationary distribution that concentrates on allocations that are locally consistent
with high utility estimates.

Partial observability perturbs this stationary distribution by altering transition probabilities through missed
detections and misinformation. However, the presence of stochastic decision making and communication can
preserve ergodicity, ensuring that the chain continues to explore the allocation space [55]. In this view, partial
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observability does not necessarily prevent convergence to useful allocation patterns, but it modifies the set of likely
allocations and the timescales over which they are reached.

Another perspective connects the metaheuristic dynamics to potential games and distributed optimization. In a
potential game formulation, one defines a global potential function, often related to the negative of the total cost,
such that any unilateral change in a robot’s task assignment produces a corresponding change in the potential
equal to the robot’s utility change. If the utility functions are designed carefully, the stochastic task selection rule
can be interpreted as a form of logit response dynamics in a potential game [56]. Under full observability, such
dynamics are known to converge in distribution to a Gibbs measure concentrated around global or local maxima of
the potential. Partial observability perturbs the utility functions through estimation error, but as long as these errors
are not too large or systematically biased, the dynamics may still favor allocations with relatively high potential.

In practice, the severity of partial observability and its effects on the metaheuristic depend on environmental
factors and hardware characteristics [57]. Dense task environments with significant occlusion may challenge sensing,
while sparse environments with long-range communication may mitigate observation gaps. The design of the
metaheuristic parameters, including learning and consensus rates, temperature schedules, and reward structures,
should be informed by these factors. In particular, settings with strong partial observability may benefit from
slower learning rates that average out noisy observations, higher consensus rates that propagate information more
aggressively, and exploration mechanisms that encourage robots to occasionally search beyond their typical sensing
neighborhood.

Overall, partial observability does not invalidate the use of stochastic agent-based metaheuristics for task
allocation, but it shapes their behavior in ways that must be accounted for in analysis and design [58]. By embedding
partial observability into the modeling framework and interpreting its influence through linear cost modifications,
stochastic approximation, and Markov chain dynamics, one can develop intuition about how different parameter
regimes will perform and how to tune algorithms for specific deployment scenarios.

5. Conclusion

This paper has examined stochastic agent-based metaheuristics for distributed task allocation in heterogeneous
robotic swarms operating under partial observability. A global linear assignment formulation was introduced as
a conceptual reference, capturing the ideal allocation of heterogeneous robots to tasks when full information
is available. Building on this, a decentralized framework was developed in which each robot maintains local utility
estimates for tasks, updates these estimates using stochastic approximation based on observed rewards, and selects
tasks according to a soft-max rule [59]. Heterogeneity was incorporated through capability and requirement vectors,
which shape both the feasibility of allocations and the rewards perceived by different robots.

Partial observability was modeled through local sensing and communication structures that restrict each robot’s
view of the global state. The resulting biases and variances in reward observations influence the convergence of utility
estimates and the emergent allocation patterns. To mitigate these effects, consensus-like information exchange
mechanisms were considered, allowing robots to incorporate neighbor estimates into their own decision processes
[60]. The combined dynamics suggest that even under limited sensing and communication, swarms can approximate
solutions to effective assignment problems whose costs incorporate detection and communication limitations.

The discussion highlighted how annealing schedules, learning rates, and consensus gains interact to balance
exploration and exploitation, and how stochasticity in the decision process can help avoid persistent local conflicts
and facilitate adaptation to changing task distributions. The analysis also indicated that heterogeneity can be
leveraged to improve observability and coverage, as specialized robots may serve as information hubs for tasks that
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are difficult for others to detect, thereby shaping the overall swarm behavior through local communication and
utility propagation.

The presented framework and analysis are intended as a foundation for understanding and designing stochastic
metaheuristic task allocation schemes in realistic swarm settings [61]. Future work may explore more detailed
models of communication constraints, such as bandwidth limits and packet loss, and may consider richer reward
structures that capture risk, safety margins, and temporal deadlines. It is also of interest to investigate how learning-
based components, including value function approximation and policy search methods, can be integrated into the
agent-based metaheuristics while preserving scalability and robustness under partial observability. Another direction
is to study how environmental structure, such as clustering of tasks or time-varying obstacles, interacts with the
stochastic decision dynamics to influence performance. By continuing to refine both the modeling and algorithmic
aspects, it may be possible to develop task allocation mechanisms that are more systematically aligned with the
constraints and opportunities inherent in heterogeneous robotic swarms [62].
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